IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v183y2019icp374-386.html
   My bibliography  Save this article

Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments

Author

Listed:
  • Jung, Seunghwa
  • Choi, Jihwan P.

Abstract

Static random-access memory-based field-programmable gate arrays are increasingly being used for on-board processors in space missions. However, they are very susceptible to single event upsets that can generate on-board processor system malfunction or system failures in space radiation environments. This paper presents an on-board processor system adopting Triple Modular Redundancy with the concept of mitigation windows and external scrubber, and then suggests a mathematical model that predicts the on-board processor system failure rate by only using the information of system configuration resources. Our mathematical derivation can estimate on-board processor system reliability as a function of the single event upset rate, the number of mitigation windows, and on-board processor shield thickness. In addition, a guideline of the on-board processor system design is provided for achieving good single event upset mitigation capability and system reliability.

Suggested Citation

  • Jung, Seunghwa & Choi, Jihwan P., 2019. "Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 374-386.
  • Handle: RePEc:eee:reensy:v:183:y:2019:i:c:p:374-386
    DOI: 10.1016/j.ress.2018.09.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018304459
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.09.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Heungseob, 2017. "Optimal reliability design of a system with k-out-of-n subsystems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 572-582.
    2. Lu, Yu & Peng, Zhaoguang & Miller, Alice A. & Zhao, Tingdi & Johnson, Christopher W., 2015. "How reliable is satellite navigation for aviation? Checking availability properties with probabilistic verification," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 95-116.
    3. Prieto-Alfonso, H. & Del Peral, L. & Casolino, M. & Tsuno, K. & Ebisuzaki, T. & Rodríguez Frías, M.D., 2015. "Radiation Hardness Assurance for the JEM-EUSO Space Mission," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 137-145.
    4. McNelles, Phillip & Zeng, Zhao Chang & Renganathan, Guna & Lamarre, Greg & Akl, Yolande & Lu, Lixuan, 2016. "A comparison of Fault Trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems Part 1: Reactor trip logic loop reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 135-150.
    5. Silva, Nuno & Cunha, João Carlos & Vieira, Marco, 2017. "A field study on root cause analysis of defects in space software," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 213-229.
    6. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Single versus mixture Weibull distributions for nonparametric satellite reliability," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 295-300.
    7. Kretzschmar, U. & Gomez-Cornejo, J. & Astarloa, A. & Bidarte, U. & Ser, J. Del, 2016. "Synchronization of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA designs," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 1-9.
    8. Villalta, Igor & Bidarte, Unai & Gómez-Cornejo, Julen & Jiménez, Jaime & Lázaro, Jesús, 2018. "SEU emulation in industrial SoCs combining microprocessor and FPGA," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 53-63.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramezani, Reza & Ghavidel, Abolfazl & Sedaghat, Yasser, 2021. "Exact and efficient reliability and performance optimization of synchronous task graphs," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Zeng, Ying & Huang, Tudi & Li, Yan-Feng & Huang, Hong-Zhong, 2023. "Reliability modeling for power converter in satellite considering periodic phased mission," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Chatterjee, Samrat & Thekdi, Shital, 2020. "An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Jung, Sejin & Yoo, Junbeom & Lee, Young-Jun, 2020. "A practical application of NUREG/CR-6430 software safety hazard analysis to FPGA software," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Ramezani, Reza & Clemente, Juan Antonio & Franco, Francisco J., 2020. "Analytical reliability estimation of SRAM-based FPGA designs against single-bit and multiple-cell upsets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoque, Khaza Anuarul & Ait Mohamed, Otmane & Savaria, Yvon, 2019. "Dependability modeling and optimization of triple modular redundancy partitioning for SRAM-based FPGAs," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 107-119.
    2. Ramezani, Reza & Sedaghat, Yasser & Naghibzadeh, Mahmoud & Clemente, Juan Antonio, 2018. "A decomposition-based reliability and makespan optimization technique for hardware task graphs," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 13-24.
    3. Ramezani, Reza & Ghavidel, Abolfazl & Sedaghat, Yasser, 2021. "Exact and efficient reliability and performance optimization of synchronous task graphs," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Villalta, Igor & Bidarte, Unai & Gómez-Cornejo, Julen & Jiménez, Jaime & Lázaro, Jesús, 2018. "SEU emulation in industrial SoCs combining microprocessor and FPGA," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 53-63.
    5. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    6. Jung, Sejin & Yoo, Junbeom & Lee, Young-Jun, 2020. "A practical application of NUREG/CR-6430 software safety hazard analysis to FPGA software," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    7. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Redundancy strategies assessment and optimization of k-out-of-n systems based on Markov chains and genetic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Farhadi, Mohammad & Shahrokhi, Mahmoud & Rahmati, Seyed Habib A, 2022. "Developing a supplier selection model based on Markov chain and probability tree for a k-out-of-N system with different quality of spare parts," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Scarf, P.A. & Cavalcante, C.A.V. & Lopes, R.S., 2019. "Delay-time modelling of a critical system subject to random inspections," European Journal of Operational Research, Elsevier, vol. 278(3), pages 772-782.
    10. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    11. Endharta, Alfonsus Julanto & Yun, Won Young & Ko, Young Myoung, 2018. "Reliability evaluation of circular k-out-of-n: G balanced systems through minimal path sets," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 226-236.
    12. Torrado, Nuria & Arriaza, Antonio & Navarro, Jorge, 2021. "A study on multi-level redundancy allocation in coherent systems formed by modules," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Ramezani, Reza & Clemente, Juan Antonio & Franco, Francisco J., 2020. "Analytical reliability estimation of SRAM-based FPGA designs against single-bit and multiple-cell upsets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    15. Eryilmaz, Serkan, 2018. "The number of failed components in a k-out-of-n system consisting of multiple types of components," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 246-250.
    16. Li, Mingyang & Meng, Hongdao & Zhang, Qingpeng, 2017. "A nonparametric Bayesian modeling approach for heterogeneous lifetime data with covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 95-104.
    17. Nizar Mannai & Soufiane Gasmi, 2020. "Optimal design of k-out-of-n system under first and last replacement in reliability theory," Operational Research, Springer, vol. 20(3), pages 1353-1368, September.
    18. Zhang, Jianchun & Li, Lei & Chen, Zhiwei, 2021. "Strength–redundancy allocation problem using artificial bee colony algorithm for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    19. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    20. Chen, Zhiwei & Zhang, Hao & Wang, Xinyue & Yang, Jinling & Dui, Hongyan, 2024. "Reliability analysis and redundancy design of satellite communication system based on a novel Bayesian environmental importance," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:183:y:2019:i:c:p:374-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.