IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v170y2018icp53-63.html
   My bibliography  Save this article

SEU emulation in industrial SoCs combining microprocessor and FPGA

Author

Listed:
  • Villalta, Igor
  • Bidarte, Unai
  • Gómez-Cornejo, Julen
  • Jiménez, Jaime
  • Lázaro, Jesús

Abstract

FPGAs (Field-Programmable Gate Array) and FPGA-based SoCs (System-on-chip) are electronic devices which offer high computational performance and low time-to-market for low and medium production volumes. They are gaining popularity in critical sectors, such as automotive, aerospace, avionics and railway, making their reliability evaluation mandatory. FPGAs are notoriously sensitive to SEUs (Single Event Upsets), which are random memory errors provoked by radiation particles. The failure rate of an FPGA varies with the implemented design, depending on the amount of used resources and the implemented redundancy schemes among others. FPGA-based circuits are being used in complex safety-critical engineering systems that are designed in compliance with dependability regulations. This work presents an emulation-based methodology for estimating the failure rate of designs implemented in FPGA SoCs, which is a key data in this scenario.

Suggested Citation

  • Villalta, Igor & Bidarte, Unai & Gómez-Cornejo, Julen & Jiménez, Jaime & Lázaro, Jesús, 2018. "SEU emulation in industrial SoCs combining microprocessor and FPGA," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 53-63.
  • Handle: RePEc:eee:reensy:v:170:y:2018:i:c:p:53-63
    DOI: 10.1016/j.ress.2017.09.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016309449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.09.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McNelles, Phillip & Zeng, Zhao Chang & Renganathan, Guna & Lamarre, Greg & Akl, Yolande & Lu, Lixuan, 2016. "A comparison of Fault Trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems Part 1: Reactor trip logic loop reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 135-150.
    2. Bernardi, S. & Flammini, F. & Marrone, S. & Mazzocca, N. & Merseguer, J. & Nardone, R. & Vittorini, V., 2013. "Enabling the usage of UML in the verification of railway systems: The DAM-rail approach," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 112-126.
    3. Kretzschmar, U. & Gomez-Cornejo, J. & Astarloa, A. & Bidarte, U. & Ser, J. Del, 2016. "Synchronization of faulty processors in coarse-grained TMR protected partially reconfigurable FPGA designs," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 1-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramezani, Reza & Ghavidel, Abolfazl & Sedaghat, Yasser, 2021. "Exact and efficient reliability and performance optimization of synchronous task graphs," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Ramezani, Reza & Sedaghat, Yasser & Naghibzadeh, Mahmoud & Clemente, Juan Antonio, 2018. "A decomposition-based reliability and makespan optimization technique for hardware task graphs," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 13-24.
    3. Jung, Seunghwa & Choi, Jihwan P., 2019. "Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 374-386.
    4. Ramezani, Reza & Clemente, Juan Antonio & Franco, Francisco J., 2020. "Analytical reliability estimation of SRAM-based FPGA designs against single-bit and multiple-cell upsets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Hoque, Khaza Anuarul & Ait Mohamed, Otmane & Savaria, Yvon, 2019. "Dependability modeling and optimization of triple modular redundancy partitioning for SRAM-based FPGAs," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 107-119.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Seunghwa & Choi, Jihwan P., 2019. "Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 374-386.
    2. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    3. Jung, Sejin & Yoo, Junbeom & Lee, Young-Jun, 2020. "A practical application of NUREG/CR-6430 software safety hazard analysis to FPGA software," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    4. Hoque, Khaza Anuarul & Ait Mohamed, Otmane & Savaria, Yvon, 2019. "Dependability modeling and optimization of triple modular redundancy partitioning for SRAM-based FPGAs," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 107-119.
    5. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    6. Ramezani, Reza & Ghavidel, Abolfazl & Sedaghat, Yasser, 2021. "Exact and efficient reliability and performance optimization of synchronous task graphs," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    8. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. McNelles, Phillip & Renganathan, Guna & Zeng, Zhao Chang & Chirila, Marius & Lu, Lixuan, 2019. "A comparison of fault trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems part 2: Theoretical investigations," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 60-83.
    10. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    More about this item

    Keywords

    SEU; FPGA; Emulation; Fault injection; FIT;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:170:y:2018:i:c:p:53-63. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.