IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v202y2020ics0951832020305305.html
   My bibliography  Save this article

A practical application of NUREG/CR-6430 software safety hazard analysis to FPGA software

Author

Listed:
  • Jung, Sejin
  • Yoo, Junbeom
  • Lee, Young-Jun

Abstract

Hazard analysis is a widely-used technique to achieve the system/software safety by analyzing hazards systematically. While programmable logic controller-based digital instrumentation and control systems have been replaced with field programmable gate array (FPGA)-based ones, hazard analysis on FPGA software as well as FPGA-based controllers becomes one of the prerequisites of operational approval. The NUREG/CR-6430 provides applicable processes/methods of software safety hazard analysis (e.g., guide phrases and analysis techniques). Hazard analysis of FPGA software is different from typical software hazard analysis, since the FPGA is a hardware-based platform. This paper proposes a refined process and guide phrases at the software requirement analysis part in NUREG/CR-6430, tailored for the new target - FPGA software. We performed hazard analysis on FPGA software for a prototype version of an FPGA-based controller in Korea to show feasibility of the refined process and guide phrases.

Suggested Citation

  • Jung, Sejin & Yoo, Junbeom & Lee, Young-Jun, 2020. "A practical application of NUREG/CR-6430 software safety hazard analysis to FPGA software," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
  • Handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305305
    DOI: 10.1016/j.ress.2020.107029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020305305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McNelles, Phillip & Zeng, Zhao Chang & Renganathan, Guna & Lamarre, Greg & Akl, Yolande & Lu, Lixuan, 2016. "A comparison of Fault Trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems Part 1: Reactor trip logic loop reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 135-150.
    2. Hoque, Khaza Anuarul & Ait Mohamed, Otmane & Savaria, Yvon, 2019. "Dependability modeling and optimization of triple modular redundancy partitioning for SRAM-based FPGAs," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 107-119.
    3. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. McNelles, Phillip & Renganathan, Guna & Zeng, Zhao Chang & Chirila, Marius & Lu, Lixuan, 2019. "A comparison of fault trees and the Dynamic Flowgraph Methodology for the analysis of FPGA-based safety systems part 2: Theoretical investigations," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 60-83.
    5. Jung, Seunghwa & Choi, Jihwan P., 2019. "Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 374-386.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Shunkun & Shao, Qi & Bian, Chong, 2022. "Reliability analysis of ensemble fault tolerance for soft error mitigation against complex radiation effect," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Ramezani, Reza & Clemente, Juan Antonio & Franco, Francisco J., 2020. "Analytical reliability estimation of SRAM-based FPGA designs against single-bit and multiple-cell upsets," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    3. Ramezani, Reza & Ghavidel, Abolfazl & Sedaghat, Yasser, 2021. "Exact and efficient reliability and performance optimization of synchronous task graphs," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    4. Tang, Ming & Liao, Huchang, 2021. "Failure mode and effect analysis considering the fairness-oriented consensus of a large group with core-periphery structure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Matsuoka, Takeshi, 2023. "Reliability analysis of a BWR plant system at startup stage  - analysis by the GO-FLOW methodology with consideration of loop structures and phased mission problem -," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Jung, Seunghwa & Choi, Jihwan P., 2019. "Predicting system failure rates of SRAM-based FPGA on-board processors in space radiation environments," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 374-386.
    8. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    9. You, Qidong & Guo, Jianbin & Zeng, Shengkui & Che, Haiyang, 2024. "A dynamic Bayesian network based reliability assessment method for short-term multi-round situation awareness considering round dependencies," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Ranka Gojković & Goran Đurić & Danijela Tadić & Snežana Nestić & Aleksandar Aleksić, 2021. "Evaluation and Selection of the Quality Methods for Manufacturing Process Reliability Improvement—Intuitionistic Fuzzy Sets and Genetic Algorithm Approach," Mathematics, MDPI, vol. 9(13), pages 1-17, June.
    11. Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    12. Chatterjee, Samrat & Thekdi, Shital, 2020. "An iterative learning and inference approach to managing dynamic cyber vulnerabilities of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    14. Granig, Wolfgang & Faller, Lisa-Marie & Hammerschmidt, Dirk & Zangl, Hubert, 2019. "Dependability considerations of redundant sensor systems," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    15. Cheng, Yao & Elsayed, E.A. & Chen, Xi, 2021. "Random Multi Hazard Resilience Modeling of Engineered Systems and Critical Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    16. Li, He & Diaz, H. & Guedes Soares, C., 2021. "A developed failure mode and effect analysis for floating offshore wind turbine support structures," Renewable Energy, Elsevier, vol. 164(C), pages 133-145.
    17. Dhalmahapatra, Krantiraditya & Garg, Ashish & Singh, Kritika & Xavier, Nirmal Francis & Maiti, J., 2022. "An integrated RFUCOM – RTOPSIS approach for failure modes and effects analysis: A case of manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Liu, Peide & Li, Ying, 2021. "An improved failure mode and effect analysis method for multi-criteria group decision-making in green logistics risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Andrés A. Zúñiga & João F. P. Fernandes & Paulo J. C. Branco, 2023. "Fuzzy-Based Failure Modes, Effects, and Criticality Analysis Applied to Cyber-Power Grids," Energies, MDPI, vol. 16(8), pages 1-34, April.
    20. Li, Wanhong & Liu, Guangzhong, 2022. "Dynamic failure mode analysis approach based on an improved Taguchi process capability index," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:202:y:2020:i:c:s0951832020305305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.