IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v181y2019icp84-96.html
   My bibliography  Save this article

The influence of interorganizational factors on offshore incidents in the Norwegian petroleum industry: Challenges and future directions

Author

Listed:
  • Milch, Vibeke
  • Laumann, Karin

Abstract

In the petroleum industry, incident investigations are an important means to understand and learn from undesired events. Whereas investigations in the petroleum industry typically focus on technical, human and organizational factors, there is a growing tendency towards outsourcing and more complex forms of organizations. Processes occurring at the interfaces between companies represent important influences that should be considered when investigating incidents. The current study aimed to gain a better understanding of the influence of interorganizational factors on offshore incidents on the Norwegian Continental Shelf. Twenty-two investigation reports were analysed to identify interorganizational factors that contribute to incidents. Factors at the interorganizational level contribute to both occupational incidents and major near accidents. Four themes were identified: Ambiguities in roles and responsibilities between personnel from different companies, inadequate processes to ensure sufficient competence across interfaces, inadequate quality control routines across organizational interfaces and communication breakdowns between companies. The identified factors reflect underlying systemic deficiencies at the interorganizational level that contribute to obscure operational processes and at the same time reduce the effectiveness of existing safety barriers. Broadening the scope and incorporating factors at the interorganizational level when investigating undesired events is important in order to sufficiently learn from incidents.

Suggested Citation

  • Milch, Vibeke & Laumann, Karin, 2019. "The influence of interorganizational factors on offshore incidents in the Norwegian petroleum industry: Challenges and future directions," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 84-96.
  • Handle: RePEc:eee:reensy:v:181:y:2019:i:c:p:84-96
    DOI: 10.1016/j.ress.2018.09.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201731195X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.09.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gomes, Jose O. & Woods, David D. & Carvalho, Paulo V.R. & Huber, Gilbert J. & Borges, Marcos R.S., 2009. "Resilience and brittleness in the offshore helicopter transportation system: The identification of constraints and sacrifice decisions in pilots’ work," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 311-319.
    2. Jan-Erik Vinnem, 2014. "Offshore Risk Assessment vol 2," Springer Series in Reliability Engineering, Springer, edition 3, number 978-1-4471-5213-2, June.
    3. Alexander Cedergren, 2013. "Designing resilient infrastructure systems: a case study of decision-making challenges in railway tunnel projects," Journal of Risk Research, Taylor & Francis Journals, vol. 16(5), pages 563-582, May.
    4. Vinnem, Jan Erik & Hestad, Jon Andreas & Kvaløy, Jan Terje & Skogdalen, Jon Espen, 2010. "Analysis of root causes of major hazard precursors (hydrocarbon leaks) in the Norwegian offshore petroleum industry," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1142-1153.
    5. Oedewald, Pia & Gotcheva, Nadezhda, 2015. "Safety culture and subcontractor network governance in a complex safety critical project," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 106-114.
    6. Shelly Jeffcott & Nick Pidgeon & Andrew Weyman & John Walls, 2006. "Risk, Trust, and Safety Culture in U.K. Train Operating Companies," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1105-1121, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    2. IAIANI, Matteo & TUGNOLI, Alessandro & BONVICINI, Sarah & COZZANI, Valerio, 2021. "Analysis of Cybersecurity-related Incidents in the Process Industry," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Iaiani, Matteo & Casson Moreno, Valeria & Reniers, Genserik & Tugnoli, Alessandro & Cozzani, Valerio, 2021. "Analysis of events involving the intentional release of hazardous substances from industrial facilities," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Characteristics of enhanced safety coordination between high-speed rail operators and manufacturers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Kinga Wasilkiewicz Edwin & Marie Nilsen & Eirik Albrechtsen, 2021. "Why Is the Construction Industry Killing More Workers Than the Offshore Petroleum Industry in Occupational Accidents?," Sustainability, MDPI, vol. 13(14), pages 1-23, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Novak, Jeremy & Farr-Wharton, Ben & Brunetto, Yvonne & Shacklock, Kate & Brown, Kerry, 2017. "Safety outcomes for engineering asset management organizations: Old problem with new solutions?," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 67-73.
    2. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Characteristics of enhanced safety coordination between high-speed rail operators and manufacturers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. de Carvalho, Paulo Victor Rodrigues, 2011. "The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1482-1498.
    4. Arvidsson, Björn & Johansson, Jonas & Guldåker, Nicklas, 2021. "Critical infrastructure, geographical information science and risk governance: A systematic cross-field review," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Sørskår, Leif Inge K. & Selvik, Jon T. & Abrahamsen, Eirik B., 2019. "On the use of the vision zero principle and the ALARP principle for production loss in the oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. James H. Lambert & Jeffrey M. Keisler & William E. Wheeler & Zachary A. Collier & Igor Linkov, 2013. "Multiscale approach to the security of hardware supply chains for energy systems," Environment Systems and Decisions, Springer, vol. 33(3), pages 326-334, September.
    7. Bergström, Johan & van Winsen, Roel & Henriqson, Eder, 2015. "On the rationale of resilience in the domain of safety: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 131-141.
    8. Bani-Mustafa, Tasneem & Flage, Roger & Vasseur, Dominique & Zeng, Zhiguo & Zio, Enrico, 2020. "An extended method for evaluating assumptions deviations in quantitative risk assessment and its application to external flooding risk assessment of a nuclear power plant," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    9. Léna Masson & Julienne Brabet, 2018. "The paradoxes of externalization strategy in a safety critical industry," Post-Print hal-01765294, HAL.
    10. Jan Erik Vinnem, 2015. "Analysis of hydrocarbon leaks and verification as an operational barrier," Journal of Risk Research, Taylor & Francis Journals, vol. 18(9), pages 1130-1144, October.
    11. Mendes, Pietro A.S. & Hall, Jeremy & Matos, Stelvia & Silvestre, Bruno, 2014. "Reforming Brazil׳s offshore oil and gas safety regulatory framework: Lessons from Norway, the United Kingdom and the United States," Energy Policy, Elsevier, vol. 74(C), pages 443-453.
    12. Xinglong Wang & Shangfei Miao & Junqing Tang, 2020. "Vulnerability and Resilience Analysis of the Air Traffic Control Sector Network in China," Sustainability, MDPI, vol. 12(9), pages 1-18, May.
    13. Ali Azadeh & Mansoureh Hasannia Kolaee & Vahid Salehi, 2016. "The impact of redundancy on resilience engineering in a petrochemical plant by data envelopment analysis," Journal of Risk and Reliability, , vol. 230(3), pages 285-296, June.
    14. Shirali, Gh.A. & Mohammadfam, I. & Ebrahimipour, V., 2013. "A new method for quantitative assessment of resilience engineering by PCA and NT approach: A case study in a process industry," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 88-94.
    15. Giovanni Dolif & Andre Engelbrecht & Alessandro Jatobá & Antônio da Silva & José Gomes & Marcos Borges & Carlos Nobre & Paulo Carvalho, 2013. "Resilience and brittleness in the ALERTA RIO system: a field study about the decision-making of forecasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1831-1847, February.
    16. Marie Røyksund & Roger Flage, 2019. "When Is a Risk Assessment Deficient According to an Uncertainty‐Based Risk Perspective?," Risk Analysis, John Wiley & Sons, vol. 39(4), pages 761-776, April.
    17. Churchwell, Jared S. & Zhang, Katherine S. & Saleh, Joseph H., 2018. "Epidemiology of helicopter accidents: Trends, rates, and covariates," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 373-384.
    18. Konstandinidou, Myrto & Nivolianitou, Zoe & Kefalogianni, Eirini & Caroni, Chrys, 2011. "In-depth analysis of the causal factors of incidents reported in the Greek petrochemical industry," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1448-1455.
    19. Saleh, Joseph H. & Saltmarsh, Elizabeth A. & Favarò, Francesca M. & Brevault, Loïc, 2013. "Accident precursors, near misses, and warning signs: Critical review and formal definitions within the framework of Discrete Event Systems," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 148-154.
    20. Kontogiannis, Tom & Malakis, Stathis, 2012. "A systemic analysis of patterns of organizational breakdowns in accidents: A case from Helicopter Emergency Medical Service (HEMS) operations," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 193-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:181:y:2019:i:c:p:84-96. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.