IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v108y2023icp1-24.html
   My bibliography  Save this article

Two-stage nested simulation of tail risk measurement: A likelihood ratio approach

Author

Listed:
  • Dang, Ou
  • Feng, Mingbin
  • Hardy, Mary R.

Abstract

Estimating tail risk measures is an important task in many financial and actuarial applications and often requires nested simulations, with the outer simulations representing real world scenarios, and the inner simulations typically used for risk neutral pricing or conditional risk measurement. The standard nested simulation method is highly flexible, able to incorporate complex asset models and exotic payoff structures, but it is also computationally highly burdensome, particularly in a multi-period setting, when inner simulation paths are required at each time step of each outer level scenario. In this study, we propose and analyze a two-stage simulation procedure that efficiently estimates the conditional tail expectation of cost of a dynamic hedging program for a Variable Annuity Guaranteed Minimum Withdrawal Benefit (GMWB), under a multi-period nested simulation. In each of the two stages, the method re-uses the same set of inner level simulation paths for each outer scenario at each time point, using a likelihood ratio method to re-weight the probabilities of each individual path for the different outer scenarios. Our numerical study shows that our two-stage, likelihood ratio weighted procedure can offer a very significant improvement in efficiency, of the order of 95% as measured by the RMSE, compared with a standard nested simulation with the same computational cost.

Suggested Citation

  • Dang, Ou & Feng, Mingbin & Hardy, Mary R., 2023. "Two-stage nested simulation of tail risk measurement: A likelihood ratio approach," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 1-24.
  • Handle: RePEc:eee:insuma:v:108:y:2023:i:c:p:1-24
    DOI: 10.1016/j.insmatheco.2022.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722001111
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hai Lan & Barry L. Nelson & Jeremy Staum, 2010. "A Confidence Interval Procedure for Expected Shortfall Risk Measurement via Two-Level Simulation," Operations Research, INFORMS, vol. 58(5), pages 1481-1490, October.
    2. Kleijnen, Jack P. C. & Rubinstein, Reuven Y., 1996. "Optimization and sensitivity analysis of computer simulation models by the score function method," European Journal of Operational Research, Elsevier, vol. 88(3), pages 413-427, February.
    3. Gan, Guojun & Lin, X. Sheldon, 2015. "Valuation of large variable annuity portfolios under nested simulation: A functional data approach," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 138-150.
    4. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    5. Dang, Ou & Feng, Mingbin & Hardy, Mary R., 2022. "Dynamic importance allocated nested simulation for variable annuity risk measurement," Annals of Actuarial Science, Cambridge University Press, vol. 16(2), pages 319-348, July.
    6. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    7. Mary Hardy, 2001. "A Regime-Switching Model of Long-Term Stock Returns," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 41-53.
    8. Feng, Runhuan & Li, Peng, 2022. "Sample recycling method – a new approach to efficient nested Monte Carlo simulations," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 336-359.
    9. Ou Dang & Mingbin Feng & Mary R. Hardy, 2020. "Efficient Nested Simulation for Conditional Tail Expectation of Variable Annuities," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(2), pages 187-210, April.
    10. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2011. "Efficient Risk Estimation via Nested Sequential Simulation," Management Science, INFORMS, vol. 57(6), pages 1172-1194, June.
    11. Paul Glasserman & Xingbo Xu, 2014. "Robust risk measurement and model risk," Quantitative Finance, Taylor & Francis Journals, vol. 14(1), pages 29-58, January.
    12. Kleijnen, J.P.C. & Rubinstein, R.Y., 1996. "Optimization and Sensitivity Analysis of Computer Simulation Models by the Score Function Method," Other publications TiSEM 958c9b9a-544f-48f3-a3d1-c, Tilburg University, School of Economics and Management.
    13. Ben Mingbin Feng & Zhenni Tan & Jiayi Zheng, 2020. "Efficient Simulation Designs for Valuation of Large Variable Annuity Portfolios," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(2), pages 275-289, April.
    14. Cathcart, Mark J. & Lok, Hsiao Yen & McNeil, Alexander J. & Morrison, Steven, 2015. "Calculating Variable Annuity Liability “Greeks” Using Monte Carlo Simulation," ASTIN Bulletin, Cambridge University Press, vol. 45(2), pages 239-266, May.
    15. Lin, X. Sheldon & Yang, Shuai, 2020. "Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling approach," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 85-103.
    16. Yuhong Xu, 2014. "Robust valuation and risk measurement under model uncertainty," Papers 1407.8024, arXiv.org.
    17. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    18. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Yang & Kenneth Q. Zhou, 2023. "On Risk Management of Mortality and Longevity Capital Requirement: A Predictive Simulation Approach," Risks, MDPI, vol. 11(12), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    2. Runhuan Feng & Peng Li, 2021. "Sample Recycling Method -- A New Approach to Efficient Nested Monte Carlo Simulations," Papers 2106.06028, arXiv.org.
    3. Kun Zhang & Ben Mingbin Feng & Guangwu Liu & Shiyu Wang, 2022. "Sample Recycling for Nested Simulation with Application in Portfolio Risk Measurement," Papers 2203.15929, arXiv.org.
    4. Wang, Tianxiang & Xu, Jie & Hu, Jian-Qiang & Chen, Chun-Hung, 2023. "Efficient estimation of a risk measure requiring two-stage simulation optimization," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1355-1365.
    5. Feng, Ben Mingbin & Li, Johnny Siu-Hang & Zhou, Kenneth Q., 2022. "Green nested simulation via likelihood ratio: Applications to longevity risk management," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 285-301.
    6. David J. Eckman & Shane G. Henderson & Sara Shashaani, 2023. "Diagnostic Tools for Evaluating and Comparing Simulation-Optimization Algorithms," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 350-367, March.
    7. Wing Fung Chong & Haoen Cui & Yuxuan Li, 2021. "Pseudo-Model-Free Hedging for Variable Annuities via Deep Reinforcement Learning," Papers 2107.03340, arXiv.org, revised Oct 2022.
    8. Liu, Xiaoyu & Yan, Xing & Zhang, Kun, 2024. "Kernel quantile estimators for nested simulation with application to portfolio value-at-risk measurement," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1168-1177.
    9. Helin Zhu & Tianyi Liu & Enlu Zhou, 2015. "Risk Quantification in Stochastic Simulation under Input Uncertainty," Papers 1507.06015, arXiv.org, revised Dec 2017.
    10. L. Jeff Hong & Sandeep Juneja & Guangwu Liu, 2017. "Kernel Smoothing for Nested Estimation with Application to Portfolio Risk Measurement," Operations Research, INFORMS, vol. 65(3), pages 657-673, June.
    11. Guangxin Jiang & L. Jeff Hong & Barry L. Nelson, 2020. "Online Risk Monitoring Using Offline Simulation," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 356-375, April.
    12. Alessandro Gnoatto & Athena Picarelli & Christoph Reisinger, 2020. "Deep xVA solver -- A neural network based counterparty credit risk management framework," Papers 2005.02633, arXiv.org, revised Dec 2022.
    13. Mark Broadie & Yiping Du & Ciamac C. Moallemi, 2015. "Risk Estimation via Regression," Operations Research, INFORMS, vol. 63(5), pages 1077-1097, October.
    14. Patrick Cheridito & John Ery & Mario V. Wüthrich, 2020. "Assessing Asset-Liability Risk with Neural Networks," Risks, MDPI, vol. 8(1), pages 1-17, February.
    15. Cornelis S. L. de Graaf & Drona Kandhai & Christoph Reisinger, 2016. "Efficient exposure computation by risk factor decomposition," Papers 1608.01197, arXiv.org, revised Feb 2018.
    16. Lucio Fernandez‐Arjona & Damir Filipović, 2022. "A machine learning approach to portfolio pricing and risk management for high‐dimensional problems," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 982-1019, October.
    17. Hongjun Ha & Daniel Bauer, 2022. "A least-squares Monte Carlo approach to the estimation of enterprise risk," Finance and Stochastics, Springer, vol. 26(3), pages 417-459, July.
    18. Patrick Cheridito & John Ery & Mario V. Wuthrich, 2021. "Assessing asset-liability risk with neural networks," Papers 2105.12432, arXiv.org.
    19. Qiyun Pan & Eunshin Byon & Young Myoung Ko & Henry Lam, 2020. "Adaptive importance sampling for extreme quantile estimation with stochastic black box computer models," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(7), pages 524-547, October.
    20. Devang Sinha & Siddhartha P. Chakrabarty, 2024. "Multilevel Monte Carlo in Sample Average Approximation: Convergence, Complexity and Application," Papers 2407.18504, arXiv.org.

    More about this item

    Keywords

    Nested simulation; Likelihood ratio method; Importance sampling; Enterprise risk management; Conditional tail expectation; Tail value-at-risk; Expected shortfall; GMWB;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
    • G52 - Financial Economics - - Household Finance - - - Insurance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:108:y:2023:i:c:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.