IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v37y1989i1p72-81.html
   My bibliography  Save this article

Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models

Author

Listed:
  • Reuven Y. Rubinstein

    (Technion-Israel Institute of Technology, Haifa, Israel)

Abstract

We present a method for deriving sensitivities of performance measures for computer simulation models. We show that both the sensitivities (derivatives, gradients, Hessians, etc.) and the performance measure can be estimated simultaneously from the same simulation. Our method is based on probability measure transformations derived from the efficient score. We also present a rather general procedure from which perturbation analysis and our method can be viewed as particular cases. Applications to reliability models and stochastic shortest path networks are given.

Suggested Citation

  • Reuven Y. Rubinstein, 1989. "Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models," Operations Research, INFORMS, vol. 37(1), pages 72-81, February.
  • Handle: RePEc:inm:oropre:v:37:y:1989:i:1:p:72-81
    DOI: 10.1287/opre.37.1.72
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.37.1.72
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.37.1.72?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Pan & Lu, Zhenzhou & Zhang, Kaichao & Xiao, Sinan & Yue, Zhufeng, 2018. "Copula-based decomposition approach for the derivative-based sensitivity of variance contributions with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 437-450.
    2. Schweinberger, Michael & Snijders, Tom A.B., 2007. "Markov models for digraph panel data: Monte Carlo-based derivative estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4465-4483, May.
    3. Gilles Pages & Olivier Pironneau & Guillaume Sall, 2015. "Vibrato and Automatic Differentiation for High Order Derivatives and Sensitivities of Financial Options," Working Papers hal-01234637, HAL.
    4. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.
    5. Sridhar Bashyam & Michael C. Fu, 1994. "Application of perturbation analysis to a class of periodic review (s, S) inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 47-80, February.
    6. Marvin K. Nakayama & Perwez Shahabuddin, 1998. "Likelihood Ratio Derivative Estimation for Finite-Time Performance Measures in Generalized Semi-Markov Processes," Management Science, INFORMS, vol. 44(10), pages 1426-1441, October.
    7. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    8. Wang, Pan & Lu, Zhenzhou & Ren, Bo & Cheng, Lei, 2013. "The derivative based variance sensitivity analysis for the distribution parameters and its computation," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 305-315.
    9. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    10. Gilles Pag`es & Olivier Pironneau & Guillaume Sall, 2016. "Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options," Papers 1606.06143, arXiv.org.
    11. Gong, Wei-Bo & Schulzrinne, Henning, 1992. "Application of smoothed perturbation analysis to probabilistic routing," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 34(5), pages 467-485.
    12. Li, Jinghui & Mosleh, Ali & Kang, Rui, 2011. "Likelihood ratio gradient estimation for dynamic reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1667-1679.
    13. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:37:y:1989:i:1:p:72-81. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.