IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v231y2023ics0951832022006226.html
   My bibliography  Save this article

Cascading failure analysis of multistate loading dependent systems with application in an overloading piping network

Author

Listed:
  • Zhao, Yixin
  • Cai, Baoping
  • Kang, Henry Hooi-Siang
  • Liu, Yiliu

Abstract

Many production and safeguard systems consisting of multiple components are susceptible to the cascading failures, where one possibility is that the failure of a component leads to more workloads of other components. Such loading dependence can result in failure propagation, make the systems more vulnerable and maintenance decision-makings more difficult. In this study, we develop a model for analyzing the propagation process of failures in loading dependent systems considering overloading states and degradation of components. The multinomial distribution is applied to characterize the probabilities of total numbers of failed- and overloading components, and probability distributions of different stop scenarios of cascading process are derived. A practical case in piping network is investigated to illustrate the analysis procedure, and to compare the effectiveness of the proposed model with those of the existing methods. Numerical analyses are conducted for evaluating the factors influencing the probability distributions of total number of failed- and overloading components, as well as the occurrence frequencies of different stop scenarios. It is expected that design and maintenance of loading dependent systems can be optimized with the support of this new cascading analysis approach.

Suggested Citation

  • Zhao, Yixin & Cai, Baoping & Kang, Henry Hooi-Siang & Liu, Yiliu, 2023. "Cascading failure analysis of multistate loading dependent systems with application in an overloading piping network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006226
    DOI: 10.1016/j.ress.2022.109007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022006226
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.109007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Zhenglin & Parlikad, Ajith Kumar & Srinivasan, Rengarajan & Rasmekomen, Nipat, 2017. "On fault propagation in deterioration of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 72-80.
    2. Adnan, Muhammad & Tariq, Muhammad, 2020. "Cascading overload failure analysis in renewable integrated power grids," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Nezakati, Ensiyeh & Razmkhah, Mostafa, 2020. "Reliability analysis of a load sharing k-out-of-n:F degradation system with dependent competing failures," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Zhang, Yifan & Ng, S. Thomas, 2022. "Robustness of urban railway networks against the cascading failures induced by the fluctuation of passenger flow," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Zhang, Nan & Fouladirad, Mitra & Barros, Anne, 2017. "Maintenance analysis of a two-component load-sharing system," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 67-74.
    6. Zhou, Jian & Coit, David W. & Felder, Frank A. & Wang, Dali, 2021. "Resiliency-based restoration optimization for dependent network systems against cascading failures," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Zhang, Xi & Liu, Dong & Tu, Haicheng & Tse, Chi Kong, 2022. "An integrated modeling framework for cascading failure study and robustness assessment of cyber-coupled power grids," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Ash, J. & Newth, D., 2007. "Optimizing complex networks for resilience against cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 673-683.
    9. Ouyang, Min, 2014. "Review on modeling and simulation of interdependent critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 43-60.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dui, Hongyan & Zhang, Huanqi & Dong, Xinghui & Zhang, Songru, 2024. "Cascading failure and resilience optimization of unmanned vehicle distribution networks in IoT," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Chahrour, Nour & Bérenguer, Christophe & Tacnet, Jean-Marc, 2024. "Incorporating cascading effects analysis in the maintenance policy assessment of torrent check dams against torrential floods," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zhou, Jian & Coit, David W. & Felder, Frank A. & Tsianikas, Stamatis, 2023. "Combined optimization of system reliability improvement and resilience with mixed cascading failures in dependent network systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Zhao, Yixin & Cozzani, Valerio & Sun, Tianqi & Vatn, Jørn & Liu, Yiliu, 2023. "Condition-based maintenance for a multi-component system subject to heterogeneous failure dependences," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Sun, Hao & Xu, Pengpeng, 2021. "Using the disaster spreading theory to analyze the cascading failure of urban rail transit network," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Zhou, Lin & Qi, Xiaogang & Liu, Lifang, 2023. "Robustness of networks with dependency groups considering fluctuating loads and recovery behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    4. Zhou, Jian & Coit, David W. & Felder, Frank A. & Tsianikas, Stamatis, 2023. "Combined optimization of system reliability improvement and resilience with mixed cascading failures in dependent network systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Lin Xie & Mary Ann Lundteigen & Yiliu Liu, 2020. "Reliability and barrier assessment of series–parallel systems subject to cascading failures," Journal of Risk and Reliability, , vol. 234(3), pages 455-469, June.
    6. Wang, Shuliang & Guo, Zhaoyang & Huang, Xiaodi & Zhang, Jianhua, 2024. "A three-stage model of quantifying and analyzing power network resilience based on network theory," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Yin, Dezhi, 2021. "Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: Based on Cellular Automata," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    9. Zhang, Kaimin & Bai, Libiao & Xie, Xiaoyan & Wang, Chenshuo, 2023. "Modeling of risk cascading propagation in project portfolio network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    10. Xu, Sheng & Tu, Haicheng & Xia, Yongxiang, 2023. "Resilience enhancement of renewable cyber–physical power system against malware attacks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Quan Mao & Nan Li, 2018. "Assessment of the impact of interdependencies on the resilience of networked critical infrastructure systems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 315-337, August.
    12. Zhang, Lin & Wen, Huiying & Lu, Jian & Lei, Da & Li, Shubin & Ukkusuri, Satish V., 2022. "Exploring cascading reliability of multi-modal public transit network based on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Che, Haiyang & Zeng, Shengkui & Li, Kehui & Guo, Jianbin, 2022. "Reliability analysis of load-sharing man-machine systems subject to machine degradation, human errors, and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Masato Yamazaki & Atsushi Koike & Yoshinori Sone, 2018. "A Heuristic Approach to the Estimation of Key Parameters for a Monthly, Recursive, Dynamic CGE Model," Economics of Disasters and Climate Change, Springer, vol. 2(3), pages 283-301, October.
    15. Cats, Oded & Jenelius, Erik, 2015. "Planning for the unexpected: The value of reserve capacity for public transport network robustness," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 47-61.
    16. Yangyang Meng & Xiaofei Zhao & Jianzhong Liu & Qingjie Qi, 2023. "Dynamic Influence Analysis of the Important Station Evolution on the Resilience of Complex Metro Network," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    17. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    18. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    20. Hindolo George-Williams & Geng Feng & Frank PA Coolen & Michael Beer & Edoardo Patelli, 2019. "Extending the survival signature paradigm to complex systems with non-repairable dependent failures," Journal of Risk and Reliability, , vol. 233(4), pages 505-519, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:231:y:2023:i:c:s0951832022006226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.