IDEAS home Printed from https://ideas.repec.org/a/sae/intdis/v14y2018i7p1550147718786888.html
   My bibliography  Save this article

Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimate

Author

Listed:
  • Songtao Xue
  • Bo Wen
  • Rui Huang
  • Liyuan Huang
  • Tadanobu Sato
  • Liyu Xie
  • Hesheng Tang
  • Chunfeng Wan

Abstract

Structural parameters are the most important factors reflecting structural performance and conditions. As a result, their identification becomes the most essential aspect of the structural assessment and damage identification for the structural health monitoring. In this article, a structural parameter identification method based on Monte Carlo method and likelihood estimate is proposed. With which, parameters such as stiffness and damping are identified and studied. Identification effects subjected to three different conditions with no noise, with Gaussian noise, and with non-Gaussian noise are studied and compared. Considering the existence of damage, damage identification is also realized by the identification of the structural parameters. Both simulations and experiments are conducted to verify the proposed method. Results show that structural parameters, as well as the damages, can be well identified. Moreover, the proposed method is much robust to the noises. The proposed method may be prospective for the application of real structural health monitoring.

Suggested Citation

  • Songtao Xue & Bo Wen & Rui Huang & Liyuan Huang & Tadanobu Sato & Liyu Xie & Hesheng Tang & Chunfeng Wan, 2018. "Parameter identification for structural health monitoring based on Monte Carlo method and likelihood estimate," International Journal of Distributed Sensor Networks, , vol. 14(7), pages 15501477187, July.
  • Handle: RePEc:sae:intdis:v:14:y:2018:i:7:p:1550147718786888
    DOI: 10.1177/1550147718786888
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/1550147718786888
    Download Restriction: no

    File URL: https://libkey.io/10.1177/1550147718786888?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bensi, Michelle & Kiureghian, Armen Der & Straub, Daniel, 2013. "Efficient Bayesian network modeling of systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 200-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghafory-Ashtiany, Mohsen & Arghavani, Mahban, 2022. "Physical performance of power grids against earthquakes: from framework to implementation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    2. Mrinal Kanti Sen & Subhrajit Dutta & Golam Kabir, 2021. "Flood Resilience of Housing Infrastructure Modeling and Quantification Using a Bayesian Belief Network," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    3. Bibartiu, Otto & Dürr, Frank & Rothermel, Kurt & Ottenwälder, Beate & Grau, Andreas, 2021. "Scalable k-out-of-n models for dependability analysis with Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab & Shiri, Hodjat, 2021. "Dynamic risk analysis of marine and offshore systems suffering microbial induced stochastic degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    5. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2021. "A Bayesian Network Approach for Modeling Dependent Seismic Failures in a Nuclear Power Plant Probabilistic Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Paglioni, Vincent P. & Groth, Katrina M., 2022. "Dependency definitions for quantitative human reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    7. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
    8. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui, 2023. "Dynamic Bayesian network model to study under-deposit corrosion," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Tien, Iris & Der Kiureghian, Armen, 2016. "Algorithms for Bayesian network modeling and reliability assessment of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 134-147.
    11. Ebrahimi, Nader & Shehadeh, Mahmoud, 2015. "Assessing the reliability of components with micro- and nano-structures when they are part a multi-scale system," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 13-20.
    12. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Byun, Ji-Eun & Zwirglmaier, Kilian & Straub, Daniel & Song, Junho, 2019. "Matrix-based Bayesian Network for efficient memory storage and flexible inference," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 533-545.
    14. Gehl, Pierre & Cavalieri, Francesco & Franchin, Paolo, 2018. "Approximate Bayesian network formulation for the rapid loss assessment of real-world infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 80-93.
    15. Byun, Ji-Eun & Song, Junho, 2021. "A general framework of Bayesian network for system reliability analysis using junction tree," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    16. Tomaso Vairo & Paola Gualeni & Andrea P. Reverberi & Bruno Fabiano, 2021. "Resilience Dynamic Assessment Based on Precursor Events: Application to Ship LNG Bunkering Operations," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    17. Wang, Fang & Bai, Jie & Liu, Linlin & Ye, Tianyuan, 2024. "Temporal noisy-adder of bayesian network for scalable consecutive-k-out-of-n:F system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Malings, Carl & Pozzi, Matteo, 2016. "Value of information for spatially distributed systems: Application to sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 219-233.
    19. Byun, Ji-Eun & Song, Junho, 2020. "Efficient probabilistic multi-objective optimization of complex systems using matrix-based Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:intdis:v:14:y:2018:i:7:p:1550147718786888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.