IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v117y2013icp81-88.html
   My bibliography  Save this article

A new reliability allocation weight for reducing the occurrence of severe failure effects

Author

Listed:
  • Kim, Kyungmee O.
  • Yang, Yoonjung
  • Zuo, Ming J.

Abstract

A reliability allocation weight is used during the early design stage of a system to apportion the system reliability requirement to its individual subsystems. Since some failures have serious effects on public safety, cost and environmental issues especially in a mission critical system, the failure effect must be considered as one of the important factors in determining the allocation weight. Previously, the risk priority number or the criticality number was used to consider the failure effect in the allocation weight. In this paper, we identify the limitations of the previous approach and propose a new allocation weight based on the subsystem failure severity and its relative frequency. An example is given to illustrate that the proposed method is more effective than the previous method for reducing the occurrence of the unacceptable failure effects in a newly designed system.

Suggested Citation

  • Kim, Kyungmee O. & Yang, Yoonjung & Zuo, Ming J., 2013. "A new reliability allocation weight for reducing the occurrence of severe failure effects," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 81-88.
  • Handle: RePEc:eee:reensy:v:117:y:2013:i:c:p:81-88
    DOI: 10.1016/j.ress.2013.04.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.04.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Shenping & Fang, Quangen & Xia, Haibo & Xi, Yongtao, 2007. "Formal safety assessment based on relative risks model in ship navigation," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 369-377.
    2. Yalaoui, Alice & Chu, Chengbin & Châtelet, Eric, 2005. "Reliability allocation problem in a series–parallel system," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 55-61.
    3. Salazar, Daniel & Rocco, Claudio M. & Galván, Blas J., 2006. "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1057-1070.
    4. Yadav, Om Prakash & Singh, Nanua & Goel, Parveen S., 2006. "Reliability demonstration test planning: A three dimensional consideration," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 882-893.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ding, Rui & Liu, Zehua & Xu, Jintao & Meng, Fanpeng & Sui, Yang & Men, Xinhong, 2021. "A novel approach for reliability assessment of residual heat removal system for HPR1000 based on failure mode and effect analysis, fault tree analysis, and fuzzy Bayesian network methods," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Yadav, Om Prakash & Zhuang, Xing, 2014. "A practical reliability allocation method considering modified criticality factors," Reliability Engineering and System Safety, Elsevier, vol. 129(C), pages 57-65.
    3. Kim, Kyungmee O. & Zuo, Ming J., 2018. "Optimal allocation of reliability improvement target based on the failure risk and improvement cost," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 104-110.
    4. Yixiong Feng & Zhaoxi Hong & Jin Cheng & Likai Jia & Jianrong Tan, 2017. "Low Carbon-Oriented Optimal Reliability Design with Interval Product Failure Analysis and Grey Correlation Analysis," Sustainability, MDPI, vol. 9(3), pages 1-14, March.
    5. Kuei-Hu Chang, 2016. "A novel reliability allocation approach using the OWA tree and soft set," Annals of Operations Research, Springer, vol. 244(1), pages 3-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    2. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    3. Jing Tian & Dedi Liu & Shenglian Guo & Zhengke Pan & Xingjun Hong, 2019. "Impacts of Inter-Basin Water Transfer Projects on Optimal Water Resources Allocation in the Hanjiang River Basin, China," Sustainability, MDPI, vol. 11(7), pages 1-19, April.
    4. Hadipour, Hassan & Amiri, Maghsoud & Sharifi, Mani, 2019. "Redundancy allocation in series-parallel systems under warm standby and active components in repairable subsystems," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    5. Peiravi, Abdossaber & Nourelfath, Mustapha & Zanjani, Masoumeh Kazemi, 2022. "Universal redundancy strategy for system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    7. Cook, Jason L. & Ramirez-Marquez, Jose Emmanuel, 2009. "Optimal design of cluster-based ad-hoc networks using probabilistic solution discovery," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 218-228.
    8. Tavakkoli-Moghaddam, R. & Safari, J. & Sassani, F., 2008. "Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 550-556.
    9. Van Dyck, Jozef & Verdonck, Tim, 2014. "Precision of power-law NHPP estimates for multiple systems with known failure rate scaling," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 143-152.
    10. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    11. Awad, Mahmoud, 2016. "Economic allocation of reliability growth testing using Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 273-280.
    12. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    13. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.
    14. Molin Sun & Zhongyi Zheng & Longhui Gang, 2018. "Uncertainty Analysis of the Estimated Risk in Formal Safety Assessment," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    15. Yeh, Cheng-Ta, 2019. "An improved NSGA2 to solve a bi-objective optimization problem of multi-state electronic transaction network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Zhao, Peng & Zhang, Yiying & Li, Long, 2015. "Redundancy allocation at component level versus system level," European Journal of Operational Research, Elsevier, vol. 241(2), pages 402-411.
    17. L Podofillini & E Zio, 2008. "Events group risk importance by genetic algorithms," Journal of Risk and Reliability, , vol. 222(3), pages 337-346, September.
    18. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    19. U. Dinesh Kumar & J. E. Ramírez-Márquez & D Nowicki & D Verma, 2007. "Reliability and maintainability allocation to minimize total cost of ownership in a series-parallel system," Journal of Risk and Reliability, , vol. 221(2), pages 133-140, June.
    20. Vanem, Erik & Antão, Pedro & Østvik, Ivan & de Comas, Francisco Del Castillo, 2008. "Analysing the risk of LNG carrier operations," Reliability Engineering and System Safety, Elsevier, vol. 93(9), pages 1328-1344.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:117:y:2013:i:c:p:81-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.