A note on a reliability redundancy allocation problem using a tuned parameter genetic algorithm
Author
Abstract
Suggested Citation
DOI: 10.1007/s12597-015-0230-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Chia-Ling, 2015. "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 221-230.
- Tavakkoli-Moghaddam, R. & Safari, J. & Sassani, F., 2008. "Reliability optimization of series-parallel systems with a choice of redundancy strategies using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 550-556.
- Nachiappan, S.P. & Jawahar, N., 2007. "A genetic algorithm for optimal operating parameters of VMI system in a two-echelon supply chain," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1433-1452, November.
- Huang, Wei & Loman, James & Song, Thomas, 2015. "A reliability model of a warm standby configuration with two identical sets of units," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 237-245.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Optimal component loading in 1-out-of-N cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 58-64.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 155-162.
- Wells, Charles E., 2014. "Reliability analysis of a single warm-standby system subject to repairable and nonrepairable failures," European Journal of Operational Research, Elsevier, vol. 235(1), pages 180-186.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Anushri Maji & Asoke Kumar Bhunia & Shyamal Kumar Mondal, 2022. "A production-reliability-inventory model for a series-parallel system with mixed strategy considering shortage, warranty period, credit period in crisp and stochastic sense," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 862-907, September.
- Jiangbin Zhao & Shubin Si & Zhiqiang Cai & Ming Su & Wei Wang, 2019. "Multiobjective optimization of reliability–redundancy allocation problems for serial parallel-series systems based on importance measure," Journal of Risk and Reliability, , vol. 233(5), pages 881-897, October.
- Jia, Xiang & Chen, Hao & Cheng, Zhijun & Guo, Bo, 2016. "A comparison between two switching policies for two-unit standby system," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 109-118.
- Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Chen, Wu-Lin & Wang, Kuo-Hsiung, 2018. "Reliability analysis of a retrial machine repair problem with warm standbys and a single server with N-policy," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 476-486.
- Kim, Heungseob, 2018. "Maximization of system reliability with the consideration of component sequencing," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 64-72.
- Kim, Heungseob & Kim, Pansoo, 2017. "Reliability models for a nonrepairable system with heterogeneous components having a phase-type time-to-failure distribution," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 37-46.
- Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
- Guilani, Pedram Pourkarim & Azimi, Parham & Niaki, S.T.A. & Niaki, Seyed Armin Akhavan, 2016. "Redundancy allocation problem of a system with increasing failure rates of components based on Weibull distribution: A simulation-based optimization approach," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 187-196.
- Caserta, Marco & Voß, Stefan, 2015. "An exact algorithm for the reliability redundancy allocation problem," European Journal of Operational Research, Elsevier, vol. 244(1), pages 110-116.
- Ruiz-Castro, Juan Eloy & Dawabsha, Mohammed & Alonso, Francisco Javier, 2018. "Discrete-time Markovian arrival processes to model multi-state complex systems with loss of units and an indeterminate variable number of repairpersons," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 114-127.
- Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
- Feizabadi, Mohammad & Jahromi, Abdolhamid Eshraghniaye, 2017. "A new model for reliability optimization of series-parallel systems with non-homogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 101-112.
- Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Ruiz-Castro, Juan Eloy, 2016. "Complex multi-state systems modelled through marked Markovian arrival processes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 852-865.
- Xiaojun Liang & Yinghui Tang, 2019. "The improvement upon the reliability of the k-out-of-n:F system with the repair rates differentiation policy," Operational Research, Springer, vol. 19(2), pages 479-500, June.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
- Fernández, Arturo J., 2015. "Optimum attributes component test plans for k-out-of-n:F Weibull systems using prior information," European Journal of Operational Research, Elsevier, vol. 240(3), pages 688-696.
- Jia, Heping & Liu, Dunnan & Li, Yanbin & Ding, Yi & Liu, Mingguang & Peng, Rui, 2020. "Reliability evaluation of power systems with multi-state warm standby and multi-state performance sharing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Wang, Wei & Lin, Mingqiang & Fu, Yongnian & Luo, Xiaoping & Chen, Hanghang, 2020. "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
More about this item
Keywords
Redundancy allocation problem; Series–parallel systems; Continuous genetic algorithm; Parameter tuning; Response surface methodology (RSM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opsear:v:53:y:2016:i:2:d:10.1007_s12597-015-0230-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.