IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v181y2019icp62-74.html
   My bibliography  Save this article

An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components

Author

Listed:
  • Ouyang, Zhiyuan
  • Liu, Yu
  • Ruan, Sheng-Jia
  • Jiang, Tao

Abstract

The reliability–redundancy allocation problem (RRAP) has been intensively studied to identify the optimal system design under several constraints, so as to maximize the system reliability as much as possible. Recently, the mixed redundancy strategy where both active redundant components and cold standby components can be simultaneously used by a subsystem has been introduced into the RRAP, leading to a more superior result than that of a subsystem with either active redundancy strategy or cold standby strategy. Nevertheless, in the existing studies, all the components deployed in a subsystem have to be homogeneous even if the mixed redundancy strategy is chosen. The strong premise is released in this paper by introducing heterogeneous components into the RRAP. The resulting optimization problem is resolved by proposing an improved particle swarm optimization (PSO) algorithm with stochastic perturbation nature. The efficiency of the proposed algorithm has been demonstrated by conducting a set of comparative studies on three benchmark problems. As observed in our study, the design flexibility introduced by our method can always yield a greater system reliability than that of the state-of-the-art methods. Most importantly, we also reveal that the switching reliability has significant influence on the optimal system configuration.

Suggested Citation

  • Ouyang, Zhiyuan & Liu, Yu & Ruan, Sheng-Jia & Jiang, Tao, 2019. "An improved particle swarm optimization algorithm for reliability-redundancy allocation problem with mixed redundancy strategy and heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 62-74.
  • Handle: RePEc:eee:reensy:v:181:y:2019:i:c:p:62-74
    DOI: 10.1016/j.ress.2018.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018304125
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abouei Ardakan, Mostafa & Zeinal Hamadani, Ali, 2014. "Reliability optimization of series–parallel systems with mixed redundancy strategy in subsystems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 132-139.
    2. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    3. Yeh, Cheng-Ta & Fiondella, Lance, 2017. "Optimal redundancy allocation to maximize multi-state computer network reliability subject to correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 138-150.
    4. Huang, Chia-Ling, 2015. "A particle-based simplified swarm optimization algorithm for reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 221-230.
    5. Mostafa Abouei Ardakan & Mohammad Sima & Ali Zeinal Hamadani & David W. Coit, 2016. "A novel strategy for redundant components in reliability--redundancy allocation problems," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1043-1057, November.
    6. Kim, Heungseob & Kim, Pansoo, 2017. "Reliability–redundancy allocation problem considering optimal redundancy strategy using parallel genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 153-160.
    7. Valaei, M.R. & Behnamian, J., 2017. "Allocation and sequencing in 1-out-of-N heterogeneous cold-standby systems: Multi-objective harmony search with dynamic parameters tuning," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 78-86.
    8. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    9. Ha, Chunghun & Kuo, Way, 2006. "Reliability redundancy allocation: An improved realization for nonconvex nonlinear programming problems," European Journal of Operational Research, Elsevier, vol. 171(1), pages 24-38, May.
    10. Nahas, Nabil & Nourelfath, Mustapha & Ait-Kadi, Daoud, 2007. "Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 92(2), pages 211-222.
    11. Tian, Zhigang & Levitin, Gregory & Zuo, Ming J., 2009. "A joint reliability–redundancy optimization approach for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1568-1576.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zaretalab, Arash & Sharifi, Mani & Guilani, Pedram Pourkarim & Taghipour, Sharareh & Niaki, Seyed Taghi Akhavan, 2022. "A multi-objective model for optimizing the redundancy allocation, component supplier selection, and reliable activities for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Zhang, Hanxiao & Sun, Muxia & Li, Yan-Fu, 2022. "Reliability–redundancy allocation problem in multi-state flow network: Minimal cut-based approximation scheme," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Muhuri, Pranab K. & Nath, Rahul, 2019. "A novel evolutionary algorithmic solution approach for bilevel reliability-redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Saeideh Sheikhpour & Amin Kargar-Barzi & Ali Mahani, 2022. "A novel component mixing and mixed redundancy strategy for reliability optimization," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(1), pages 328-346, February.
    5. Peiravi, Abdossaber & Ardakan, Mostafa Abouei & Zio, Enrico, 2020. "A new Markov-based model for reliability optimization problems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Wang, Wei & Lin, Mingqiang & Fu, Yongnian & Luo, Xiaoping & Chen, Hanghang, 2020. "Multi-objective optimization of reliability-redundancy allocation problem for multi-type production systems considering redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Mohammad N Juybari & Mostafa Abouei Ardakan & Hamed Davari-Ardakani, 2019. "A penalty-guided fractal search algorithm for reliability–redundancy allocation problems with cold-standby strategy," Journal of Risk and Reliability, , vol. 233(5), pages 775-790, October.
    8. Zhang, Jinchun & Lv, Hang & Hou, Jinxiu, 2023. "A novel general model for RAP and RRAP optimization of k-out-of-n:G systems with mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Gholinezhad, Hadi & Zeinal Hamadani, Ali, 2017. "A new model for the redundancy allocation problem with component mixing and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 66-73.
    10. de Paula, Cassio Pereira & Visnadi, Lais Bittencourt & de Castro, Helio Fiori, 2019. "Multi-objective optimization in redundant system considering load sharing," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 17-27.
    11. Guilani, Pardis Pourkarim & Juybari, Mohammad N. & Ardakan, Mostafa Abouei & Kim, Heungseob, 2020. "Sequence optimization in reliability problems with a mixed strategy and heterogeneous backup scheme," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    12. Dobani, Ehsan Ramezani & Ardakan, Mostafa Abouei & Davari-Ardakani, Hamed & Juybari, Mohammad N., 2019. "RRAP-CM: A new reliability-redundancy allocation problem with heterogeneous components," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Guilani, Pardis Pourkarim & Ardakan, Mostafa Abouei & Dobani, Ehsan Ramezani, 2022. "Optimal component sequence in heterogeneous 1-out-of-N mixed RRAPs," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Hsieh, Tsung-Jung, 2021. "Component mixing with a cold standby strategy for the redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    15. Ardakan, Mostafa Abouei & Talkhabi, Sajjad & Juybari, Mohammad N., 2022. "Optimal activation order vs. redundancy strategies in reliability optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    16. Li, Shuai & Chi, Xuefen & Yu, Baozhu, 2022. "An improved particle swarm optimization algorithm for the reliability–redundancy allocation problem with global reliability," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    17. Li, Yan-Fu & Zhang, Hanxiao, 2022. "The methods for exactly solving redundancy allocation optimization for multi-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    18. Peiravi, Abdossaber & Karbasian, Mahdi & Ardakan, Mostafa Abouei & Coit, David W., 2019. "Reliability optimization of series-parallel systems with K-mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 17-28.
    19. Soheil Azizi & Milad Mohammadi, 2023. "Strategy selection for multi-objective redundancy allocation problem in a k-out-of-n system considering the mean time to failure," OPSEARCH, Springer;Operational Research Society of India, vol. 60(2), pages 1021-1044, June.
    20. Gholinezhad, Hadi, 2024. "A new model for reliability redundancy allocation problem with component mixing," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:181:y:2019:i:c:p:62-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.