IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics095183201831353x.html
   My bibliography  Save this article

Investigation of temperature-dependent high consequence system with weak and strong links based on probability of loss of assured safety

Author

Listed:
  • Pi, Shiqiang
  • Xiao, Longyuan

Abstract

Strong link and weak link systems are the critical safety design of high consequence system. The probability of loss of assured safety (PLOAS) which is the likelihood that weak link system will fail to deactivate the high consequence system before strong link system fails is used to assess the system assured safety. In this paper, a novel method based on PLOAS is proposed to estimate the mean and standard deviation of failure temperature or the minimum failure temperature of strong link for temperature-dependent high consequence system when given the failure temperature density function of weak link and the PLOAS. Four test problems are studied to verify the correctness of the proposed method. The corresponding L1-norm minimization problems are solved using gradient descend method. Based on the results of test problems, it concludes that this new method can provide a clear and quantitative “guide line†for critical safety component design. Moreover, the influences of the rates of temperature increase of strong link and weak link systems on required ability to bear abnormal heat environment are discussed and the safety index assignment is finally introduced.

Suggested Citation

  • Pi, Shiqiang & Xiao, Longyuan, 2020. "Investigation of temperature-dependent high consequence system with weak and strong links based on probability of loss of assured safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s095183201831353x
    DOI: 10.1016/j.ress.2019.106701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201831353X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1374-1387.
    2. Strupczewski, A., 2003. "Accident risks in nuclear-power plants," Applied Energy, Elsevier, vol. 75(1-2), pages 79-86, May.
    3. Zhang, Xiaoge & Mahadevan, Sankaran & Deng, Xinyang, 2017. "Reliability analysis with linguistic data: An evidential network approach," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 111-121.
    4. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L. & Sallaberry, C.J., 2006. "Sensitivity analysis in conjunction with evidence theory representations of epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1414-1434.
    5. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification of the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1363-1373.
    6. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2006. "Probability of loss of assured safety in temperature dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 91(3), pages 320-348.
    7. Helton, Jon C. & Pilch, Martin & Sallaberry, Cédric J., 2014. "Probability of loss of assured safety in systems with multiple time-dependent failure modes: Representations with aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 171-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pi, Shiqiang & Liu, Ying & Chen, Haiyan & Deng, Yan & Xiao, Longyuan, 2021. "Probability of loss of assured safety in systems with weak and strong links subject to dependent failures and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2022. "Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2009. "Effect of delayed link failure on probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 294-310.
    4. Pi, Shiqiang & Liu, Ying & Chen, Haiyan & Deng, Yan & Xiao, Longyuan, 2021. "Probability of loss of assured safety in systems with weak and strong links subject to dependent failures and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Helton, Jon C. & Pilch, Martin & Sallaberry, Cédric J., 2014. "Probability of loss of assured safety in systems with multiple time-dependent failure modes: Representations with aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 171-200.
    7. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification of the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1363-1373.
    8. Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
    9. Helton, J.C. & Johnson, J.D. & Oberkampf, W.L., 2007. "Verification test problems for the calculation of probability of loss of assured safety in temperature-dependent systems with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1374-1387.
    10. Johansson, Bengt, 2013. "A broadened typology on energy and security," Energy, Elsevier, vol. 53(C), pages 199-205.
    11. Limbourg, Philipp & de Rocquigny, Etienne, 2010. "Uncertainty analysis using evidence theory – confronting level-1 and level-2 approaches with data availability and computational constraints," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 550-564.
    12. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    14. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    15. David Curto & Fernando Acebes & Jose M Gonzalez-Varona & David Poza, 2024. "Impact of aleatoric, stochastic and epistemic uncertainties on project cost contingency reserves," Papers 2406.03500, arXiv.org.
    16. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    17. Liu, Qiang, 2021. "Reliability evaluation of two-stage evidence classification system considering preference and error," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Hsiao, Chih-Tung & Liu, Chung-Shu & Chang, Dong-Shang & Chen, Chun-Cheng, 2018. "Dynamic modeling of the policy effect and development of electric power systems: A case in Taiwan," Energy Policy, Elsevier, vol. 122(C), pages 377-387.
    19. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    20. Carless, Travis S. & Talabi, Sola M. & Fischbeck, Paul S., 2019. "Risk and regulatory considerations for small modular reactor emergency planning zones based on passive decontamination potential," Energy, Elsevier, vol. 167(C), pages 740-756.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s095183201831353x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.