IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023004921.html
   My bibliography  Save this article

Two-stage support vector machine-enabled deep excavation settlement prediction considering class imbalance and multi-source uncertainties

Author

Listed:
  • Pan, Yue
  • Qin, Jianjun
  • Hou, Yongmao
  • Chen, Jin-Jian

Abstract

This paper proposes a robust ground settlement prediction framework that can cope with class imbalance and multi-source uncertainties within the practice of deep excavation. There are two main stages incorporated to achieve a reliable risk perception with high accuracy. The first stage involves the application of the Least Square Support Vector Machine (LSSVM) under a statistical learning process (SLP) for detecting settlement occurrences. The second stage utilizes the Least Square Support Vector Regression (LSSVR) under the coupled simulated annealing (CSA) optimizer to predict settlement evolution. It is followed by the construction of prediction intervals and a global sensitivity analysis (GSA) to facilitate deeper investigation. A real deep excavation project as part of Shanghai Metro is used as a case study to validate the effectiveness of the proposed framework, yielding high prediction accuracy in ground settlement prediction. Moreover, the prediction results can be expressed by two types of high-quality intervals as a promising description of uncertainties attributed to the intelligent model and collected data. Overall, the proposed two-stage LSSVM-based framework offers practical value as a decision-making support tool for stakeholders to understand and control the ground settlement as a reflection of risk status, contributing to enhancements of early risk perception and management in deep excavation engineering.

Suggested Citation

  • Pan, Yue & Qin, Jianjun & Hou, Yongmao & Chen, Jin-Jian, 2024. "Two-stage support vector machine-enabled deep excavation settlement prediction considering class imbalance and multi-source uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023004921
    DOI: 10.1016/j.ress.2023.109578
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023004921
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109578?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    2. Tabandeh, Armin & Sharma, Neetesh & Gardoni, Paolo, 2022. "Uncertainty propagation in risk and resilience analysis of hierarchical systems," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Yong, Weixun & Zhang, Wengang & Nguyen, Hoang & Bui, Xuan-Nam & Choi, Yosoon & Nguyen-Thoi, Trung & Zhou, Jian & Tran, Trung Tin, 2022. "Analysis and prediction of diaphragm wall deflection induced by deep braced excavations using finite element method and artificial neural network optimized by metaheuristic algorithms," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Shen, Shui-Long & Lin, Song-Shun & Zhou, Annan, 2023. "A cloud model-based approach for risk analysis of excavation system," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Iannacone, Leandro & Sharma, Neetesh & Tabandeh, Armin & Gardoni, Paolo, 2022. "Modeling Time-varying Reliability and Resilience of Deteriorating Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Feng, Liuyang & Zhang, Limao, 2022. "Enhanced prediction intervals of tunnel-induced settlement using the genetic algorithm and neural network," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Lins, Isis Didier & Droguett, Enrique López & Moura, Márcio das Chagas & Zio, Enrico & Jacinto, Carlos Magno, 2015. "Computing confidence and prediction intervals of industrial equipment degradation by bootstrapped support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 120-128.
    8. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Zheng, Xiao-Wei & Li, Hong-Nan & Gardoni, Paolo, 2023. "Hybrid Bayesian-Copula-based risk assessment for tall buildings subject to wind loads considering various uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    11. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Xianguo & Wang, Jingyi & Feng, Zongbao & Chen, Hongyu & Li, Tiejun & Liu, Yang, 2024. "Multisource information fusion for real-time prediction and multiobjective optimization of large-diameter slurry shield attitude," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Wang, Ying & Zhao, Ou & Zhang, Limao, 2024. "Multiplex networks in resilience modeling of critical infrastructure systems: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Liu, Juncai & Tian, Li & Yang, Meng & Meng, Xiangrui, 2024. "Probabilistic framework for seismic resilience assessment of transmission tower-line systems subjected to mainshock-aftershock sequences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Liang, Zhenglin & Li, Yan-Fu, 2023. "Holistic Resilience and Reliability Measures for Cellular Telecommunication Networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    6. Sun, Qin & Li, Hongxu & Zhong, Yuanfu & Ren, Kezhou & Zhang, Yingchao, 2024. "Deep reinforcement learning-based resilience enhancement strategy of unmanned weapon system-of-systems under inevitable interferences," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Mühlhofer, Evelyn & Koks, Elco E. & Kropf, Chahan M. & Sansavini, Giovanni & Bresch, David N., 2023. "A generalized natural hazard risk modelling framework for infrastructure failure cascades," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Liu, Wenli & Li, Ang & Fang, Weili & Love, Peter E.D. & Hartmann, Timo & Luo, Hanbin, 2023. "A hybrid data-driven model for geotechnical reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Hughes, William & Watson, Peter L. & Cerrai, Diego & Zhang, Xinxuan & Bagtzoglou, Amvrossios & Zhang, Wei & Anagnostou, Emmanouil, 2024. "Assessing grid hardening strategies to improve power system performance during storms using a hybrid mechanistic-machine learning outage prediction model," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    10. Nocera, Fabrizio & Contento, Alessandro & Gardoni, Paolo, 2024. "Risk analysis of supply chains: The role of supporting structures and infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Caetano, Henrique O. & N., Luiz Desuó & Fogliatto, Matheus S.S. & Maciel, Carlos D., 2024. "Resilience assessment of critical infrastructures using dynamic Bayesian networks and evidence propagation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Mei Liu & Boning Li & Hongjun Cui & Pin-Chao Liao & Yuecheng Huang, 2022. "Research Paradigm of Network Approaches in Construction Safety and Occupational Health," IJERPH, MDPI, vol. 19(19), pages 1-22, September.
    13. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Hou, Guangyang & Muraleetharan, Kanthasamy K. & Panchalogaranjan, Vinushika & Moses, Paul & Javid, Amir & Al-Dakheeli, Hussein & Bulut, Rifat & Campos, Richard & Harvey, P. Scott & Miller, Gerald & Bo, 2023. "Resilience assessment and enhancement evaluation of power distribution systems subjected to ice storms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Liang, Zhenglin & Jiang, Chen & Sun, Muxia & Xue, Zongqi & Li, Yan-Fu, 2023. "Resilience analysis for confronting the spreading risk of contagious diseases," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Li, Yaohan & Dong, You & Guo, Hongyuan, 2023. "Copula-based multivariate renewal model for life-cycle analysis of civil infrastructure considering multiple dependent deterioration processes," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Qin, Zhiyuan & Naser, M.Z., 2023. "Machine learning and model driven bayesian uncertainty quantification in suspended nonstructural systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    19. Liu, Xiao & Xie, Qiang, 2024. "A probabilistic framework to evaluate seismic resilience of substations based on three-stage uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    20. Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023004921. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.