IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v114y2013icp137-147.html
   My bibliography  Save this article

Optimizing inspection intervals—Reliability and availability in terms of a cost model: A case study on railway carriers

Author

Listed:
  • ten Wolde, Mike
  • Ghobbar, Adel A.

Abstract

This paper states the problem that railway carriers have with inspections and maintenance in its most cost optimal way. Often there is external pressure to improve reliability and availability and to reduce costs significantly. To overcome this problem this paper suggests a model that tries to find the optimal inspection interval. Not all maintenance companies have their inspection intervals that match with the actual reliability of a system anymore and the inspection intervals are not necessarily at a cost optimum. This research retrieves the actual failure and repair data and combines this together with the availability of a system to find the optimum inspection interval in terms of costs. The application of the optimization approach to a railway carrier maintenance company in the Netherlands is also presented.

Suggested Citation

  • ten Wolde, Mike & Ghobbar, Adel A., 2013. "Optimizing inspection intervals—Reliability and availability in terms of a cost model: A case study on railway carriers," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 137-147.
  • Handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:137-147
    DOI: 10.1016/j.ress.2012.12.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.12.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marais, Karen B. & Saleh, Joseph H., 2009. "Beyond its cost, the value of maintenance: An analytical framework for capturing its net present value," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 644-657.
    2. Rosqvist, T. & Laakso, K. & Reunanen, M., 2009. "Value-driven maintenance planning for a production plant," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 97-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. W Zhu & M Fouladirad & C Bérenguer, 2015. "Bi-criteria maintenance policies for a system subject to competing wear and δ-shock failures," Journal of Risk and Reliability, , vol. 229(6), pages 485-500, December.
    2. Alebrant Mendes, Angélica & Duarte Ribeiro, José Luis, 2014. "Establishment of a maintenance plan based on quantitative analysis in the context of RCM in a JIT production scenario," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 21-29.
    3. Zhao, Qian Qian & Yun, Won Young, 2018. "Determining the inspection intervals for one-shot systems with support equipment," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 63-75.
    4. Andrade, Antonio Ramos & Stow, Julian, 2017. "Assessing the potential cost savings of introducing the maintenance option of ‘Economic Tyre Turning’ in Great Britain railway wheelsets," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 317-325.
    5. Regattieri, A. & Giazzi, A. & Gamberi, M. & Gamberini, R., 2015. "An innovative method to optimize the maintenance policies in an aircraft: General framework and case study," Journal of Air Transport Management, Elsevier, vol. 44, pages 8-20.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marais, Karen B., 2013. "Value maximizing maintenance policies under general repair," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 76-87.
    2. Gómez Fernández, Juan F. & Márquez, Adolfo Crespo & López-Campos, Mónica A., 2016. "Customer-oriented risk assessment in network utilities," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 72-83.
    3. Ahammed, Faisal & Azeem, Abdullahil, 2013. "Selection of the most appropriate package of Solar Home System using Analytic Hierarchy Process model in rural areas of Bangladesh," Renewable Energy, Elsevier, vol. 55(C), pages 6-11.
    4. Hamidi, Maryam & Liao, Haitao & Szidarovszky, Ferenc, 2016. "Non-cooperative and cooperative game-theoretic models for usage-based lease contracts," European Journal of Operational Research, Elsevier, vol. 255(1), pages 163-174.
    5. Martyna Tomala & Andrzej Rusin & Adam Wojaczek, 2020. "Risk-Based Planning of Diagnostic Testing of Turbines Operating with Increased Flexibility," Energies, MDPI, vol. 13(13), pages 1-16, July.
    6. Castet, Jean-Francois & Saleh, Joseph H., 2012. "On the concept of survivability, with application to spacecraft and space-based networks," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 123-138.
    7. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
    8. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    9. Tinga, Tiedo, 2010. "Application of physical failure models to enable usage and load based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1061-1075.
    10. Özcan, Evren Can & Ünlüsoy, Sultan & Eren, Tamer, 2017. "A combined goal programming – AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1410-1423.
    11. Rusin, Andrzej & Bieniek, Michał, 2017. "Maintenance planning of power plant elements based on avoided risk value," Energy, Elsevier, vol. 134(C), pages 672-680.
    12. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    13. Jackson, Canek & Pascual, Rodrigo, 2021. "Joint pricing and maintenance strategies in availability-based product-service systems under different overhaul conditions," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Nourelfath, Mustapha & Châtelet, Eric, 2012. "Integrating production, inventory and maintenance planning for a parallel system with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 59-66.
    15. Elizaveta Gavrikova & Irina Volkova & Yegor Burda, 2020. "Strategic Aspects of Asset Management: An Overview of Current Research," Sustainability, MDPI, vol. 12(15), pages 1-31, July.
    16. Cha, Ji Hwan, 2016. "New stochastic models for preventive maintenance and maintenance optimizationAuthor-Name: Lee, Hyunju," European Journal of Operational Research, Elsevier, vol. 255(1), pages 80-90.
    17. Jeanne Demgne & Sophie Mercier & William Lair & Jérôme Lonchampt, 2017. "Modelling and numerical assessment of a maintenance strategy with stock through piecewise deterministic Markov processes and quasi Monte Carlo methods," Journal of Risk and Reliability, , vol. 231(4), pages 429-445, August.
    18. Wu, Jun & Xie, Min & Adam Ng, Tsan Sheng, 2011. "On a general periodic preventive maintenance policy incorporating warranty contracts and system ageing losses," International Journal of Production Economics, Elsevier, vol. 129(1), pages 102-110, January.
    19. Castet, Jean-Francois & Saleh, Joseph H., 2010. "Beyond reliability, multi-state failure analysis of satellite subsystems: A statistical approach," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 311-322.
    20. Rusin, Andrzej & Wojaczek, Adam, 2019. "Improving the availability and lengthening the life of power unit elements through the use of risk-based maintenance planning," Energy, Elsevier, vol. 180(C), pages 28-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:114:y:2013:i:c:p:137-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.