IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp63-75.html
   My bibliography  Save this article

Determining the inspection intervals for one-shot systems with support equipment

Author

Listed:
  • Zhao, Qian Qian
  • Yun, Won Young

Abstract

This paper considers systems that comprise one-shot devices and support equipment. One-shot devices are stored for long periods of time, and failures are detected only upon inspection. The support equipment needed to operate one-shot devices is maintained immediately upon failure. This paper addresses the inspection schedule problem for such systems with limited maintenance resources. The interval availability and life cycle cost are used as optimization criteria. The aim is to determine near-optimal inspection intervals for one-shot systems to minimize the expected life cycle cost and satisfy the target interval availability between inspection periods. An estimation of distribution algorithm (EDA) and a heuristic method are proposed to find the near-optimal solutions, and numerical examples are given to demonstrate the effects of the various model parameters to the near-optimal inspection intervals.

Suggested Citation

  • Zhao, Qian Qian & Yun, Won Young, 2018. "Determining the inspection intervals for one-shot systems with support equipment," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 63-75.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:63-75
    DOI: 10.1016/j.ress.2017.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016309000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khac Tuan Huynh & Anne Barros & Christophe Bérenguer & Inma T. Castro, 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Post-Print hal-00790728, HAL.
    2. Huynh, K.T. & Barros, A. & Bérenguer, C. & Castro, I.T., 2011. "A periodic inspection and replacement policy for systems subject to competing failure modes due to degradation and traumatic events," Reliability Engineering and System Safety, Elsevier, vol. 96(4), pages 497-508.
    3. ten Wolde, Mike & Ghobbar, Adel A., 2013. "Optimizing inspection intervals—Reliability and availability in terms of a cost model: A case study on railway carriers," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 137-147.
    4. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    5. Nakagawa, T. & Mizutani, S. & Chen, M., 2010. "A summary of periodic and random inspection policies," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 906-911.
    6. van der Weide, J.A.M. & Pandey, Mahesh D., 2015. "A stochastic alternating renewal process model for unavailability analysis of standby safety equipment," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 97-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Xiaojun & Liu, Kai & He, Mu & Balakrishnan, N., 2021. "Reliability estimation for one-shot devices under cyclic accelerated life-testing," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Wu, Shuo-Jye & Hsu, Chu-Chun & Huang, Syuan-Rong, 2020. "Optimal designs and reliability sampling plans for one-shot devices with cost considerations," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Zhao, Qian Qian & Yun, Won Young, 2019. "Storage availability of one-shot system under periodic inspection considering inspection error," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 120-133.
    4. Cheng, Dawei & Lu, Zhong & Zhou, Jia & Liang, Xihui, 2023. "An optimizing maintenance policy for airborne redundant systems operating with faults by using Markov process and NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Alberti, A.R. & Neto, W.A. Ferreira & Cavalcante, C.A.V. & Santos, A.C.J., 2022. "Modelling a flexible two-phase inspection-maintenance policy for safety-critical systems considering revised and non-revised inspections," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Zhu, Xiaojun & Balakrishnan, N., 2022. "One-shot device test data analysis using non-parametric and semi-parametric inferential methods and applications," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan, Dzung T. & Zhu, Yada, 2015. "Multi-stage optimization for periodic inspection planning of geo-distributed infrastructure systems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 797-804.
    2. Xufeng Zhao & Toshio Nakagawa, 2015. "Optimal periodic and random inspections with first, last and overtime policies," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1648-1660, July.
    3. Wang, Chaonan & Xing, Liudong & Levitin, Gregory, 2013. "Reliability analysis of multi-trigger binary systems subject to competing failures," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 9-17.
    4. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    6. Hajipour, Yassin & Taghipour, Sharareh, 2016. "Non-periodic inspection optimization of multi-component and k-out-of-m systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 228-243.
    7. Wang, Chaonan & Xing, Liudong & Peng, Rui & Pan, Zhusheng, 2017. "Competing failure analysis in phased-mission systems with multiple functional dependence groups," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 24-33.
    8. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    9. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Zhang, Aibo & Zhang, Tieling & Barros, Anne & Liu, Yiliu, 2020. "Optimization of maintenances following proof tests for the final element of a safety-instrumented system," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    11. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    12. Liu, Bin & Liang, Zhenglin & Parlikad, Ajith Kumar & Xie, Min & Kuo, Way, 2017. "Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 200-209.
    13. Huynh, K.T., 2021. "An adaptive predictive maintenance model for repairable deteriorating systems using inverse Gaussian degradation process," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Hai-Kun Wang & Yan-Feng Li & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Remaining useful life estimation under degradation and shock damage," Journal of Risk and Reliability, , vol. 229(3), pages 200-208, June.
    15. Castro, Inma T. & Basten, Rob J.I. & van Houtum, Geert-Jan, 2020. "Maintenance cost evaluation for heterogeneous complex systems under continuous monitoring," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    16. Compare, Michele & Bellani, Luca & Zio, Enrico, 2019. "Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 164-180.
    17. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    19. Cheng, Yao & Wei, Yian & Liao, Haitao, 2022. "Optimal sampling-based sequential inspection and maintenance plans for a heterogeneous product with competing failure modes," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    20. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:63-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.