IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i1p97-110.html
   My bibliography  Save this article

Value-driven maintenance planning for a production plant

Author

Listed:
  • Rosqvist, T.
  • Laakso, K.
  • Reunanen, M.

Abstract

Maintenance involves maintaining and securing the equipment and systems in, or restoring them to, a state in which they can perform the required functions. The challenge for maintenance planning is to identify appropriate objects and tasks for preventive maintenance and ensure that there are adequate resources for the repair actions. In this paper we will present a maintenance planning approach, called value-driven maintenance planning (VDMP), to emphasise the fact that the objectives of the plant are the reference points for specifying functional requirements for the equipment locations and equipment.

Suggested Citation

  • Rosqvist, T. & Laakso, K. & Reunanen, M., 2009. "Value-driven maintenance planning for a production plant," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 97-110.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:1:p:97-110
    DOI: 10.1016/j.ress.2007.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832007001135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2007.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Waeyenbergh, Geert & Pintelon, Liliane, 2002. "A framework for maintenance concept development," International Journal of Production Economics, Elsevier, vol. 77(3), pages 299-313, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nourelfath, Mustapha & Châtelet, Eric, 2012. "Integrating production, inventory and maintenance planning for a parallel system with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 59-66.
    2. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
    3. Liu, Bin & Xu, Zhengguo & Xie, Min & Kuo, Way, 2014. "A value-based preventive maintenance policy for multi-component system with continuously degrading components," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 83-89.
    4. ten Wolde, Mike & Ghobbar, Adel A., 2013. "Optimizing inspection intervals—Reliability and availability in terms of a cost model: A case study on railway carriers," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 137-147.
    5. Marais, Karen B., 2013. "Value maximizing maintenance policies under general repair," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 76-87.
    6. Elizaveta Gavrikova & Irina Volkova & Yegor Burda, 2020. "Strategic Aspects of Asset Management: An Overview of Current Research," Sustainability, MDPI, vol. 12(15), pages 1-31, July.
    7. Özcan, Evren Can & Ünlüsoy, Sultan & Eren, Tamer, 2017. "A combined goal programming – AHP approach supported with TOPSIS for maintenance strategy selection in hydroelectric power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1410-1423.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omorodion Omoregbe & Eniola Yemi Taiwo, 2017. "Production Facilities Maintenance Practices and Sustainable Competitive Advantage in the Paint Manufacturing Industry, Benin City, Nigeria," Annals of the University of Petrosani, Economics, University of Petrosani, Romania, vol. 17(1), pages 209-222.
    2. Alsyouf, Imad, 2007. "The role of maintenance in improving companies' productivity and profitability," International Journal of Production Economics, Elsevier, vol. 105(1), pages 70-78, January.
    3. Faccio, M. & Persona, A. & Sgarbossa, F. & Zanin, G., 2014. "Industrial maintenance policy development: A quantitative framework," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 85-93.
    4. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    5. Waeyenbergh, Geert & Pintelon, Liliane, 2004. "Maintenance concept development: A case study," International Journal of Production Economics, Elsevier, vol. 89(3), pages 395-405, June.
    6. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Muchiri, Peter & Pintelon, Liliane & Gelders, Ludo & Martin, Harry, 2011. "Development of maintenance function performance measurement framework and indicators," International Journal of Production Economics, Elsevier, vol. 131(1), pages 295-302, May.
    8. Priyank Srivastava & Dinesh Khanduja & V. P. Agrawal, 2020. "Agile maintenance attribute coding and evaluation based decision making in sugar manufacturing plant," OPSEARCH, Springer;Operational Research Society of India, vol. 57(2), pages 553-583, June.
    9. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Goossens, Adriaan J.M. & Basten, Rob J.I., 2015. "Exploring maintenance policy selection using the Analytic Hierarchy Process; An application for naval ships," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 31-41.
    11. Alexandros Bousdekis & Babis Magoutas & Dimitris Apostolou & Gregoris Mentzas, 2018. "Review, analysis and synthesis of prognostic-based decision support methods for condition based maintenance," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1303-1316, August.
    12. Oakley, Jordan L. & Wilson, Kevin J. & Philipson, Pete, 2022. "A condition-based maintenance policy for continuously monitored multi-component systems with economic and stochastic dependence," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    14. Haritha Saranga & U. Kumar, 2006. "“Optimization of aircraft maintenance/support infrastructure using genetic algorithms—level of repair analysis”," Annals of Operations Research, Springer, vol. 143(1), pages 91-106, March.
    15. Al-Najjar, Basim, 2007. "The lack of maintenance and not maintenance which costs: A model to describe and quantify the impact of vibration-based maintenance on company's business," International Journal of Production Economics, Elsevier, vol. 107(1), pages 260-273, May.
    16. Al-Najjar, Basim & Alsyouf, Imad, 2004. "Enhancing a company's profitability and competitiveness using integrated vibration-based maintenance: A case study," European Journal of Operational Research, Elsevier, vol. 157(3), pages 643-657, September.
    17. Wang, Ling & Chu, Jian & Wu, Jun, 2007. "Selection of optimum maintenance strategies based on a fuzzy analytic hierarchy process," International Journal of Production Economics, Elsevier, vol. 107(1), pages 151-163, May.
    18. Molenaers, An & Baets, Herman & Pintelon, Liliane & Waeyenbergh, Geert, 2012. "Criticality classification of spare parts: A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 570-578.
    19. Alsyouf, Imad, 2009. "Maintenance practices in Swedish industries: Survey results," International Journal of Production Economics, Elsevier, vol. 121(1), pages 212-223, September.
    20. Chan, F. T. S. & Lau, H. C. W. & Ip, R. W. L. & Chan, H. K. & Kong, S., 2005. "Implementation of total productive maintenance: A case study," International Journal of Production Economics, Elsevier, vol. 95(1), pages 71-94, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:1:p:97-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.