IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v91y2006i9p1008-1026.html
   My bibliography  Save this article

Soft computing approach for reliability optimization: State-of-the-art survey

Author

Listed:
  • Gen, Mitsuo
  • Yun, YoungSu

Abstract

In the broadest sense, reliability is a measure of performance of systems. As systems have grown more complex, the consequences of their unreliable behavior have become severe in terms of cost, effort, lives, etc., and the interest in assessing system reliability and the need for improving the reliability of products and systems have become very important. Most solution methods for reliability optimization assume that systems have redundancy components in series and/or parallel systems and alternative designs are available. Reliability optimization problems concentrate on optimal allocation of redundancy components and optimal selection of alternative designs to meet system requirement. In the past two decades, numerous reliability optimization techniques have been proposed. Generally, these techniques can be classified as linear programming, dynamic programming, integer programming, geometric programming, heuristic method, Lagrangean multiplier method and so on. A Genetic Algorithm (GA), as a soft computing approach, is a powerful tool for solving various reliability optimization problems. In this paper, we briefly survey GA-based approach for various reliability optimization problems, such as reliability optimization of redundant system, reliability optimization with alternative design, reliability optimization with time-dependent reliability, reliability optimization with interval coefficients, bicriteria reliability optimization, and reliability optimization with fuzzy goals. We also introduce the hybrid approaches for combining GA with fuzzy logic, neural network and other conventional search techniques. Finally, we have some experiments with an example of various reliability optimization problems using hybrid GA approach.

Suggested Citation

  • Gen, Mitsuo & Yun, YoungSu, 2006. "Soft computing approach for reliability optimization: State-of-the-art survey," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1008-1026.
  • Handle: RePEc:eee:reensy:v:91:y:2006:i:9:p:1008-1026
    DOI: 10.1016/j.ress.2005.11.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832005002024
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2005.11.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Ruiqing & Liu, Baoding, 2004. "Redundancy optimization problems with uncertainty of combining randomness and fuzziness," European Journal of Operational Research, Elsevier, vol. 157(3), pages 716-735, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Optimal component loading in 1-out-of-N cold standby systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 58-64.
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2014. "Cold vs. hot standby mission operation cost minimization for 1-out-of-N systems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 155-162.
    3. Altiparmak, Fulya & Dengiz, Berna, 2009. "A cross entropy approach to design of reliable networks," European Journal of Operational Research, Elsevier, vol. 199(2), pages 542-552, December.
    4. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal aborting rule in multi-attempt missions performed by multicomponent systems," European Journal of Operational Research, Elsevier, vol. 283(1), pages 244-252.
    5. Shahparvari, Shahrooz & Abbasi, Babak & Chhetri, Prem, 2017. "Possibilistic scheduling routing for short-notice bushfire emergency evacuation under uncertainties: An Australian case study," Omega, Elsevier, vol. 72(C), pages 96-117.
    6. Levitin, Gregory & Xing, Liudong & Peng, Sun & Dai, Yuanshun, 2015. "Optimal choice of standby modes in 1-out-of-N system with respect to mission reliability and cost," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 587-596.
    7. Wu, Xin-yang & Wu, Xiao-yue & Balakrishnan, Narayanaswamy, 2018. "Reliability allocation model and algorithm for phased mission systems with uncertain component parameters based on importance measure," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 266-276.
    8. Huang, Xiaoxia, 2007. "Two new models for portfolio selection with stochastic returns taking fuzzy information," European Journal of Operational Research, Elsevier, vol. 180(1), pages 396-405, July.
    9. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
    10. Levitin, Gregory & Finkelstein, Maxim & Li, Yan-Feng, 2020. "Balancing mission success probability and risk of system loss by allocating redundancy in systems operating with a rescue option," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:91:y:2006:i:9:p:1008-1026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.