IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v108y2012icp100-107.html
   My bibliography  Save this article

Physics of failure as a basis for solder elements reliability assessment in wind turbines

Author

Listed:
  • Kostandyan, Erik E.
  • Sørensen, John D.

Abstract

Traditionally assessment of reliability of electrical components is done by classical reliability techniques using failure rates as the basic measure of reliability. In this paper a structural reliability approach is applied in order to include all relevant uncertainties and to give a more detailed description of the reliability. A physics of failure approach is applied. A SnAg solder component used in power electronics is used as an example. Crack propagation in the SnAg solder is modeled and a model to assess the accumulated plastic strain is proposed based on a physics of failure approach. Based on the proposed model it is described how to find the accumulated linear damage and reliability levels for a given temperature loading profile. Using structural reliability methods the reliability levels of the electrical components are assessed by introducing scale factors for stresses.

Suggested Citation

  • Kostandyan, Erik E. & Sørensen, John D., 2012. "Physics of failure as a basis for solder elements reliability assessment in wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 100-107.
  • Handle: RePEc:eee:reensy:v:108:y:2012:i:c:p:100-107
    DOI: 10.1016/j.ress.2012.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012001330
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.06.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John D. Sørensen & Henrik S. Toft, 2010. "Probabilistic Design of Wind Turbines," Energies, MDPI, vol. 3(2), pages 1-17, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maheri, Alireza, 2014. "A critical evaluation of deterministic methods in size optimisation of reliable and cost effective standalone hybrid renewable energy systems," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 159-174.
    2. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    3. Gu, Hang-Hang & Wang, Run-Zi & Tang, Min-Jin & Zhang, Xian-Cheng & Tu, Shan-Tung, 2024. "Data-physics-model based fatigue reliability assessment methodology for high-temperature components and its application in steam turbine rotor," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    5. Sun, Bo & Fan, Xuejun & van Driel, Willem & Cui, Chengqiang & Zhang, Guoqi, 2018. "A stochastic process based reliability prediction method for LED driver," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 140-146.
    6. Li, Y.F. & Valla, S. & Zio, E., 2015. "Reliability assessment of generic geared wind turbines by GTST-MLD model and Monte Carlo simulation," Renewable Energy, Elsevier, vol. 83(C), pages 222-233.
    7. Cristina Morel & Jean-Yves Morel, 2024. "Power Semiconductor Junction Temperature and Lifetime Estimations: A Review," Energies, MDPI, vol. 17(18), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Muskulus, 2015. "Pareto-Optimal Evaluation of Ultimate Limit States in Offshore Wind Turbine Structural Analysis," Energies, MDPI, vol. 8(12), pages 1-14, December.
    2. Liu, Min & Qin, Jianjun & Lu, Da-Gang & Zhang, Wei-Heng & Zhu, Jiang-Sheng & Faber, Michael Havbro, 2022. "Towards resilience of offshore wind farms: A framework and application to asset integrity management," Applied Energy, Elsevier, vol. 322(C).
    3. Shao, Yizhe & Liu, Jie, 2024. "Uncertainty quantification for dynamic responses of offshore wind turbine based on manifold learning," Renewable Energy, Elsevier, vol. 222(C).
    4. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Liao, Ding & Zhu, Shun-Peng & Correia, José A.F.O. & De Jesus, Abílio M.P. & Veljkovic, Milan & Berto, Filippo, 2022. "Fatigue reliability of wind turbines: historical perspectives, recent developments and future prospects," Renewable Energy, Elsevier, vol. 200(C), pages 724-742.
    6. Wilkie, David & Galasso, Carmine, 2020. "A probabilistic framework for offshore wind turbine loss assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 1772-1783.
    7. Ramezani, Mahyar & Choe, Do-Eun & Heydarpour, Khashayar & Koo, Bonjun, 2023. "Uncertainty models for the structural design of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    8. Zhiyu Jiang & Weifei Hu & Wenbin Dong & Zhen Gao & Zhengru Ren, 2017. "Structural Reliability Analysis of Wind Turbines: A Review," Energies, MDPI, vol. 10(12), pages 1-25, December.
    9. Jianjun Qin & Michael Havbro Faber, 2019. "Resilience Informed Integrity Management of Wind Turbine Parks," Energies, MDPI, vol. 12(14), pages 1-19, July.
    10. Hesam Mirzaei Rafsanjani & John Dalsgaard Sørensen & Søren Fæster & Asger Sturlason, 2017. "Fatigue Reliability Analysis of Wind Turbine Cast Components," Energies, MDPI, vol. 10(4), pages 1-14, April.
    11. Okpokparoro, Salem & Sriramula, Srinivas, 2021. "Uncertainty modeling in reliability analysis of floating wind turbine support structures," Renewable Energy, Elsevier, vol. 165(P1), pages 88-108.
    12. Qin, Mengfei & Shi, Wei & Chai, Wei & Fu, Xing & Li, Lin & Li, Xin, 2023. "Extreme structural response prediction and fatigue damage evaluation for large-scale monopile offshore wind turbines subject to typhoon conditions," Renewable Energy, Elsevier, vol. 208(C), pages 450-464.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:108:y:2012:i:c:p:100-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.