IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v178y2018icp118-129.html
   My bibliography  Save this article

Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications

Author

Listed:
  • Iamsumang, Chonlagarn
  • Mosleh, Ali
  • Modarres, Mohammad

Abstract

This paper presents a new modeling approach, computational algorithm, and an example application for health monitoring and learning in on-line System Health Management (SHM). A hybrid Dynamic Bayesian Network (DBN) is introduced to represent complex engineering systems with underlying physics of failure by modeling a theoretical or empirical degradation model with continuous variables. The methodology is designed to be flexible and intuitive, and scalable from small, localized functionality to large complex dynamic systems. Markov Chain Monte Carlo (MCMC) inference is optimized using a pre-computation strategy and dynamic programming for on-line monitoring of system health. Proposed Monitoring and Anomaly Detection algorithm uses pattern recognition to improve failure detection and estimation of Remaining Useful Life (RUL). Pre-computation inference database enables efficient on-line learning and maintenance decision-making. The proposed methodology and algorithm are demonstrated with an Unmanned Aerial Vehicle (UAV) application.

Suggested Citation

  • Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.
  • Handle: RePEc:eee:reensy:v:178:y:2018:i:c:p:118-129
    DOI: 10.1016/j.ress.2018.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018303417
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
    2. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    3. Wilson, Alyson G. & Huzurbazar, Aparna V., 2007. "Bayesian networks for multilevel system reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1413-1420.
    4. Masoud Pourali & Ali Mosleh, 2013. "A Bayesian approach to sensor placement optimization and system reliability monitoring," Journal of Risk and Reliability, , vol. 227(3), pages 327-347, June.
    5. Rabiei, Masoud & Modarres, Mohammad, 2013. "A recursive Bayesian framework for structural health management using online monitoring and periodic inspections," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 154-164.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moradi, Ramin & Cofre-Martel, Sergio & Lopez Droguett, Enrique & Modarres, Mohammad & Groth, Katrina M., 2022. "Integration of deep learning and Bayesian networks for condition and operation risk monitoring of complex engineering systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Guo, Kai & Ye, Zhisheng & Liu, Datong & Peng, Xiyuan, 2021. "UAV flight control sensing enhancement with a data-driven adaptive fusion model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Moradi, Ramin & Groth, Katrina M., 2020. "Modernizing risk assessment: A systematic integration of PRA and PHM techniques," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Dourado, Arinan & Viana, Felipe A.C., 2021. "Early life failures and services of industrial asset fleets," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    5. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Jun Zhang & Haifeng Bian & Huanhuan Zhao & Xuexue Wang & Linlin Zhang & Yiping Bai, 2020. "Bayesian Network-Based Risk Assessment of Single-Phase Grounding Accidents of Power Transmission Lines," IJERPH, MDPI, vol. 17(6), pages 1-17, March.
    7. GAO, Guibing & ZHOU, Dengming & TANG, Hao & HU, Xin, 2021. "An Intelligent Health diagnosis and Maintenance Decision-making approach in Smart Manufacturing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. BahooToroody, Ahmad & De Carlo, Filippo & Paltrinieri, Nicola & Tucci, Mario & Van Gelder, P.H.A.J.M., 2020. "Bayesian regression based condition monitoring approach for effective reliability prediction of random processes in autonomous energy supply operation," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Zheng, Jianqin & Wang, Chang & Liang, Yongtu & Liao, Qi & Li, Zhuochao & Wang, Bohong, 2022. "Deeppipe: A deep-learning method for anomaly detection of multi-product pipelines," Energy, Elsevier, vol. 259(C).
    10. Zhou, Jianxiong & Wei, Shanbi & Chai, Yi, 2021. "Using improved dynamic Bayesian networks in reliability evaluation for flexible test system of aerospace pyromechanical device products," Reliability Engineering and System Safety, Elsevier, vol. 210(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, X. & Ichchou, M. & Saidi, A., 2010. "Reliability assessment of complex mechatronic systems using a modified nonparametric belief propagation algorithm," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1174-1185.
    2. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    3. Yontay, Petek & Pan, Rong, 2016. "A computational Bayesian approach to dependency assessment in system reliability," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 104-114.
    4. Dongjin Lee & Rong Pan, 2017. "Predictive maintenance of complex system with multi-level reliability structure," International Journal of Production Research, Taylor & Francis Journals, vol. 55(16), pages 4785-4801, August.
    5. Lei Jiang & Yiliu Liu & Xiaomin Wang & Mary Ann Lundteigen, 2019. "Operation-oriented reliability and availability evaluation for onboard high-speed train control system with dynamic Bayesian network," Journal of Risk and Reliability, , vol. 233(3), pages 455-469, June.
    6. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2018. "An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 124-135.
    7. Kondakci, Suleyman, 2015. "Analysis of information security reliability: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 275-299.
    8. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2013. "Risk-based design of process systems using discrete-time Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 5-17.
    9. Cai, Baoping & Liu, Yonghong & Liu, Zengkai & Tian, Xiaojie & Dong, Xin & Yu, Shilin, 2012. "Using Bayesian networks in reliability evaluation for subsea blowout preventer control system," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 32-41.
    10. Haddad, Tarek & Himes, Adam & Campbell, Michael, 2014. "Fracture prediction of cardiac lead medical devices using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 145-157.
    11. Khakzad, Nima & Khan, Faisal & Amyotte, Paul, 2011. "Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(8), pages 925-932.
    12. Francis, Royce A. & Guikema, Seth D. & Henneman, Lucas, 2014. "Bayesian Belief Networks for predicting drinking water distribution system pipe breaks," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 1-11.
    13. Zhang, Xiaoge & Mahadevan, Sankaran & Deng, Xinyang, 2017. "Reliability analysis with linguistic data: An evidential network approach," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 111-121.
    14. Chun Su & Ning Lin & Yequn Fu, 2016. "Multi-state reliability assessment for hydraulic lifting system based on the theory of dynamic Bayesian networks," Journal of Risk and Reliability, , vol. 230(6), pages 533-544, December.
    15. Li, Mingyang & Liu, Jian & Li, Jing & Uk Kim, Byoung, 2014. "Bayesian modeling of multi-state hierarchical systems with multi-level information aggregation," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 158-164.
    16. Zhang, Haoyuan & Marsh, D. William R, 2021. "Managing infrastructure asset: Bayesian networks for inspection and maintenance decisions reasoning and planning," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    17. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    18. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    19. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    20. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:178:y:2018:i:c:p:118-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.