IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v92y2014icp145-150.html
   My bibliography  Save this article

Techno-economic and environmental assessment of an olive stone based biorefinery

Author

Listed:
  • Hernández, Valentina
  • Romero-García, Juan M.
  • Dávila, Javier A.
  • Castro, Eulogio
  • Cardona, Carlos A.

Abstract

Olive tree cultivation is spreading worldwide as a consequence of beneficial effects of olive oil consumption. Olive oil production process and table olive industries are the major sources of olive stones. Currently, this by-product is used in direct combustion to produce energy as electricity or heat. However, there are other possibilities for taking full advantage of a renewable source of interesting compounds. In this work the techno-economic and environmental assessment of two biorefinery schemes and its comparison with the direct combustion (base case) of this residue are presented. The first biorefinery scheme describes the integrated production of xylitol, furfural, ethanol and poly-3-hydroxybutyrate (PHB). The second biorefinery scheme considers the production of xylitol, furfural, ethanol and PHB integrated to a cogeneration system for producing bioenergy from the solid residues resulting from the mentioned processes. The results showed that in the first biorefinery scheme, the net profit margin is approximately 53%, while the second present a net profit margin of 6%.

Suggested Citation

  • Hernández, Valentina & Romero-García, Juan M. & Dávila, Javier A. & Castro, Eulogio & Cardona, Carlos A., 2014. "Techno-economic and environmental assessment of an olive stone based biorefinery," Resources, Conservation & Recycling, Elsevier, vol. 92(C), pages 145-150.
  • Handle: RePEc:eee:recore:v:92:y:2014:i:c:p:145-150
    DOI: 10.1016/j.resconrec.2014.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921344914001980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2014.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, I.I. & Gupta, A.K., 2012. "Sugarcane bagasse gasification: Global reaction mechanism of syngas evolution," Applied Energy, Elsevier, vol. 91(1), pages 75-81.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Queiroz, Sarah S. & Jofre, Fanny M. & Mussatto, Solange I. & Felipe, Maria das Graças A., 2022. "Scaling up xylitol bioproduction: Challenges to achieve a profitable bioprocess," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    2. Manhongo, T.T. & Chimphango, A. & Thornley, P. & Röder, M., 2021. "An economic viability and environmental impact assessment of mango processing waste-based biorefineries for co-producing bioenergy and bioactive compounds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    3. Louw, Jeanne & Dogbe, Eunice S. & Yang, Bin & Görgens, Johann F., 2023. "Prioritisation of biomass-derived products for biorefineries based on economic feasibility: A review on the comparability of techno-economic assessment results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chen, Wei-Hsin & Chen, Chih-Jung & Hung, Chen-I & Shen, Cheng-Hsien & Hsu, Heng-Wen, 2013. "A comparison of gasification phenomena among raw biomass, torrefied biomass and coal in an entrained-flow reactor," Applied Energy, Elsevier, vol. 112(C), pages 421-430.
    3. Nicodème, Thibault & Berchem, Thomas & Jacquet, Nicolas & Richel, Aurore, 2018. "Thermochemical conversion of sugar industry by-products to biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 151-159.
    4. Ahmed, I.I. & Gupta, A.K., 2013. "Experiments and stochastic simulations of lignite coal during pyrolysis and gasification," Applied Energy, Elsevier, vol. 102(C), pages 355-363.
    5. Vikram, Shruti & Deore, Sujeetkumar P. & De Blasio, Cataldo & Mahajani, Sanjay M. & Kumar, Sandeep, 2023. "Air gasification of high-ash solid waste in a pilot-scale downdraft gasifier: Experimental and numerical analysis," Energy, Elsevier, vol. 270(C).
    6. Motta, Ingrid Lopes & Miranda, Nahieh Toscano & Maciel Filho, Rubens & Wolf Maciel, Maria Regina, 2018. "Biomass gasification in fluidized beds: A review of biomass moisture content and operating pressure effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 998-1023.
    7. Baláš, Marek & Milčák, Pavel & Elbl, Patrik & Lisý, Martin & Lachman, Jakub & Kracík, Petr, 2022. "Gasification of fermentation residue in a fluidised-bed gasifier," Energy, Elsevier, vol. 245(C).
    8. Zhang, Qian & Li, Qingfeng & Zhang, Linxian & Wang, Zhiqing & Jing, Xuliang & Yu, Zhongliang & Song, Shuangshuang & Fang, Yitian, 2014. "Preliminary study on co-gasification behavior of deoiled asphalt with coal and biomass," Applied Energy, Elsevier, vol. 132(C), pages 426-434.
    9. Sarkar, Madhura & Kumar, Ajay & Tumuluru, Jaya Shankar & Patil, Krushna N. & Bellmer, Danielle D., 2014. "Gasification performance of switchgrass pretreated with torrefaction and densification," Applied Energy, Elsevier, vol. 127(C), pages 194-201.
    10. Ghulamullah Maitlo & Imran Ali & Kashif Hussain Mangi & Safdar Ali & Hubdar Ali Maitlo & Imran Nazir Unar & Abdul Majeed Pirzada, 2022. "Thermochemical Conversion of Biomass for Syngas Production: Current Status and Future Trends," Sustainability, MDPI, vol. 14(5), pages 1-30, February.
    11. Feng Zhang & Xiuqin Hou & Xingchang Xue & Jiyun Ren & Lingxiao Dong & Xumeng Wei & Lin Jian & Lei Deng, 2023. "Release Characteristics of Potassium during Biomass Combustion," Energies, MDPI, vol. 16(10), pages 1-11, May.
    12. Dmitry Porshnov, 2022. "Evolution of pyrolysis and gasification as waste to energy tools for low carbon economy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    13. Rincon, Luis & Puri, Manas & Kojakovic, Ana & Maltsoglou, Irini, 2019. "The contribution of sustainable bioenergy to renewable electricity generation in Turkey: Evidence based policy from an integrated energy and agriculture approach," Energy Policy, Elsevier, vol. 130(C), pages 69-88.
    14. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    15. Kouhi, Masoumeh & Shams, Kayghobad, 2019. "Bulk features of catalytic co-pyrolysis of sugarcane bagasse and a hydrogen-rich waste: The case of waste heavy paraffin," Renewable Energy, Elsevier, vol. 140(C), pages 970-982.
    16. Fang, Yi & Paul, Manosh C. & Varjani, Sunita & Li, Xian & Park, Young-Kwon & You, Siming, 2021. "Concentrated solar thermochemical gasification of biomass: Principles, applications, and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    17. Han, Long & Wang, Qinhui & Luo, Zhongyang & Rong, Nai & Deng, Guangyi, 2013. "H2 rich gas production via pressurized fluidized bed gasification of sawdust with in situ CO2 capture," Applied Energy, Elsevier, vol. 109(C), pages 36-43.
    18. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O," Energy, Elsevier, vol. 167(C), pages 688-697.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:92:y:2014:i:c:p:145-150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.