IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v107y2012icp122-132.html
   My bibliography  Save this article

A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum

Author

Listed:
  • O'Shaughnessy, Susan A.
  • Evett, Steven R.
  • Colaizzi, Paul D.
  • Howell, Terry A.

Abstract

Variations of the crop water stress index (CWSI) have been used to characterize plant water stress and schedule irrigations. Usually, this thermal-based stress index has been calculated from measurements taken once daily or over a short period of time, near solar noon or after and in cloud free conditions. A method of integrating the CWSI over a day was developed to avoid the noise that may occur if weather prevents a clear CWSI signal near solar noon. This CWSI and time threshold (CWSI-TT) was the accumulated time that the CWSI was greater than a threshold value (0.45); and it was compared with a time threshold (CWSI-TT) based on a well-watered crop. We investigated the effectiveness of the CWSI-TT to automatically control irrigation of short and long season grain sorghum hybrids (Sorghum bicolor (L.) Moench, NC+ 5C35 and Pioneer 84G62); and to examine crop response to deficit irrigation treatments (i.e. 80%, 55%, 30% and 0% of full replenishment of soil water depletion to 1.5-m depth). Results from automated irrigation scheduling were compared to those from manual irrigation based on weekly neutron probe readings. In 2009, results from the Automatic irrigation were mixed; biomass yields in the 55% and 0% treatments, dry grain yields in the 80% and 0% treatments, and WUE in the 80%, 55%, and 0% treatments were not significantly different from those in the corresponding Manual treatments. However, dry grain yields in the 55% and 30% treatments were significantly less than those in the Manual control plots. These differences were due mainly to soil water variability in the beginning of the growing season. This conclusion is reinforced by the fact that IWUE for dry grain yield was not significantly different for 30% and 55% treatments, and was significantly greater for Automatic control at 80%. In 2010, there were no significant differences in biomass, dry grain yield, WUE, or IWUE for irrigation control methods when compared across the same amount treatments. Similar results between irrigation methods for at least the highest irrigation rate (80% of soil water depletion) in 2009 and among all irrigation treatment amounts in 2010 indicate that the CWSI-TT method can be an effective trigger for automatically scheduling either full or deficit irrigations for grain sorghum in a semi-arid region.

Suggested Citation

  • O'Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D. & Howell, Terry A., 2012. "A crop water stress index and time threshold for automatic irrigation scheduling of grain sorghum," Agricultural Water Management, Elsevier, vol. 107(C), pages 122-132.
  • Handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:122-132
    DOI: 10.1016/j.agwat.2012.01.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377412000443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2012.01.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gontia, N.K. & Tiwari, K.N., 2008. "Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry," Agricultural Water Management, Elsevier, vol. 95(10), pages 1144-1152, October.
    2. Olufayo, A. & Baldy, C. & Ruelle, P., 1996. "Sorghum yield, water use and canopy temperatures under different levels of irrigation," Agricultural Water Management, Elsevier, vol. 30(1), pages 77-90, March.
    3. Yuan, Guofu & Luo, Yi & Sun, Xiaomin & Tang, Dengyin, 2004. "Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(1), pages 29-40, January.
    4. Emekli, Yasar & Bastug, Ruhi & Buyuktas, Dursun & Emekli, Nefise Yasemin, 2007. "Evaluation of a crop water stress index for irrigation scheduling of bermudagrass," Agricultural Water Management, Elsevier, vol. 90(3), pages 205-212, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morales-Santos, Angela & Nolz, Reinhard, 2023. "Assessment of canopy temperature-based water stress indices for irrigated and rainfed soybeans under subhumid conditions," Agricultural Water Management, Elsevier, vol. 279(C).
    2. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    3. Silva, Marcos Dornelas Freitas Machado e & Calijuri, Maria Lúcia & Sales, Francisco José Ferreira de & Souza, Mauro Henrique Batalha de & Lopes, Lucas Sampaio, 2014. "Integration of technologies and alternative sources of water and energy to promote the sustainability of urban landscapes," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 71-81.
    4. Drechsler, Kelley & Kisekka, Isaya & Upadhyaya, Shrinivasa, 2019. "A comprehensive stress indicator for evaluating plant water status in almond trees," Agricultural Water Management, Elsevier, vol. 216(C), pages 214-223.
    5. Ihuoma, Samuel O. & Madramootoo, Chandra A., 2019. "Crop reflectance indices for mapping water stress in greenhouse grown bell pepper," Agricultural Water Management, Elsevier, vol. 219(C), pages 49-58.
    6. Singh, Jasreman & Ge, Yufeng & Heeren, Derek M. & Walter-Shea, Elizabeth & Neale, Christopher M.U. & Irmak, Suat & Woldt, Wayne E. & Bai, Geng & Bhatti, Sandeep & Maguire, Mitchell S., 2021. "Inter-relationships between water depletion and temperature differential in row crop canopies in a sub-humid climate," Agricultural Water Management, Elsevier, vol. 256(C).
    7. Anzhen Qin & Dongfeng Ning & Zhandong Liu & Sen Li & Ben Zhao & Aiwang Duan, 2021. "Determining Threshold Values for a Crop Water Stress Index-Based Center Pivot Irrigation with Optimum Grain Yield," Agriculture, MDPI, vol. 11(10), pages 1-16, October.
    8. Colaizzi, Paul D. & O’Shaughnessy, Susan A. & Evett, Steve R. & Mounce, Ryan B., 2017. "Crop evapotranspiration calculation using infrared thermometers aboard center pivots," Agricultural Water Management, Elsevier, vol. 187(C), pages 173-189.
    9. Apolo-Apolo, O.E. & Martínez-Guanter, J. & Pérez-Ruiz, M. & Egea, G., 2020. "Design and assessment of new artificial reference surfaces for real time monitoring of crop water stress index in maize," Agricultural Water Management, Elsevier, vol. 240(C).
    10. O’Shaughnessy, Susan A. & Evett, Steven R. & Colaizzi, Paul D., 2015. "Dynamic prescription maps for site-specific variable rate irrigation of cotton," Agricultural Water Management, Elsevier, vol. 159(C), pages 123-138.
    11. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    12. O’Shaughnessy, Susan A. & Kim, Minyoung & Andrade, Manuel A. & Colaizzi, Paul D. & Evett, Steven R., 2020. "Site-specific irrigation of grain sorghum using plant and soil water sensing feedback - Texas High Plains," Agricultural Water Management, Elsevier, vol. 240(C).
    13. Vasilenko, Alexandr & Ulman, Miloš, 2015. "Concept of Horticulture Ambient Intelligence System," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(4), pages 1-8, December.
    14. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    15. Laouisset, M. B. & Dellal, A., 2016. "Estimation of Barley (Hordeum Vulgare L.) Crop Water Requirements Using Cropwat Software in Ksar-Chellala Region, Algeria," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 8(3), pages 1-12, September.
    16. Pereira, L.S. & Paredes, P. & Jovanovic, N., 2020. "Soil water balance models for determining crop water and irrigation requirements and irrigation scheduling focusing on the FAO56 method and the dual Kc approach," Agricultural Water Management, Elsevier, vol. 241(C).
    17. Nakabuye, Hope Njuki & Rudnick, Daran & DeJonge, Kendall C. & Lo, Tsz Him & Heeren, Derek & Qiao, Xin & Franz, Trenton E. & Katimbo, Abia & Duan, Jiaming, 2022. "Real-time irrigation scheduling of maize using Degrees Above Non-Stressed (DANS) index in semi-arid environment," Agricultural Water Management, Elsevier, vol. 274(C).
    18. Zhang, Minne & Zhao, Weixia & Zhu, Changxin & Li, Jiusheng, 2024. "Influence of the sampling time interval of canopy temperature on the dynamic zoning of variable rate irrigation," Agricultural Water Management, Elsevier, vol. 295(C).
    19. DeJonge, Kendall C. & Taghvaeian, Saleh & Trout, Thomas J. & Comas, Louise H., 2015. "Comparison of canopy temperature-based water stress indices for maize," Agricultural Water Management, Elsevier, vol. 156(C), pages 51-62.
    20. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    21. Hou, Mengjie & Tian, Fei & Zhang, Tong & Huang, Mengsi, 2019. "Evaluation of canopy temperature depression, transpiration, and canopy greenness in relation to yield of soybean at reproductive stage based on remote sensing imagery," Agricultural Water Management, Elsevier, vol. 222(C), pages 182-192.
    22. Olutobi Adeyemi & Ivan Grove & Sven Peets & Tomas Norton, 2017. "Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation," Sustainability, MDPI, vol. 9(3), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
    2. Kumar, Navsal & Adeloye, Adebayo J. & Shankar, Vijay & Rustum, Rabee, 2020. "Neural computing modelling of the crop water stress index," Agricultural Water Management, Elsevier, vol. 239(C).
    3. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    4. Han, Ming & Zhang, Huihui & DeJonge, Kendall C. & Comas, Louise H. & Gleason, Sean, 2018. "Comparison of three crop water stress index models with sap flow measurements in maize," Agricultural Water Management, Elsevier, vol. 203(C), pages 366-375.
    5. Al-Kayssi, A.W. & Shihab, R.M. & Mustafa, S.H., 2011. "Impact of soil water stress on Nigellone oil content of black cumin seeds grown in calcareous-gypsifereous soils," Agricultural Water Management, Elsevier, vol. 100(1), pages 46-57.
    6. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).
    8. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    9. Widmoser, P., 2010. "An alternative to define canopy surface temperature bounds," Agricultural Water Management, Elsevier, vol. 97(2), pages 224-230, February.
    10. Hartzell, Samantha & Bartlett, Mark S. & Porporato, Amilcare, 2018. "Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model," Ecological Modelling, Elsevier, vol. 384(C), pages 173-187.
    11. N. Dercas & A. Liakatas, 2007. "Water and Radiation Effect on Sweet Sorghum Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(9), pages 1585-1600, September.
    12. Zhang, Liyuan & Zhang, Huihui & Zhu, Qingzhen & Niu, Yaxiao, 2023. "Further investigating the performance of crop water stress index for maize from baseline fluctuation, effects of environmental factors, and variation of critical value," Agricultural Water Management, Elsevier, vol. 285(C).
    13. Pou, Alícia & Diago, Maria P. & Medrano, Hipólito & Baluja, Javier & Tardaguila, Javier, 2014. "Validation of thermal indices for water status identification in grapevine," Agricultural Water Management, Elsevier, vol. 134(C), pages 60-72.
    14. Fan, Tinglu & Wang, Shuying & Xiaoming, Tang & Luo, Junjie & Stewart, Bob A. & Gao, Yufeng, 2005. "Grain yield and water use in a long-term fertilization trial in Northwest China," Agricultural Water Management, Elsevier, vol. 76(1), pages 36-52, July.
    15. Mailhol, Jean Claude & Olufayo, Ayorinde A. & Ruelle, Pierre, 1997. "Sorghum and sunflower evapotranspiration and yield from simulated leaf area index," Agricultural Water Management, Elsevier, vol. 35(1-2), pages 167-182, December.
    16. Shi, Jianchu & Wu, Xun & Wang, Xiaoyu & Zhang, Mo & Han, Le & Zhang, Wenjing & Liu, Wen & Zuo, Qiang & Wu, Xiaoguang & Zhang, Hongfei & Ben-Gal, Alon, 2020. "Determining threshold values for root-soil water weighted plant water deficit index based smart irrigation," Agricultural Water Management, Elsevier, vol. 230(C).
    17. Zhang, Liyuan & Zhang, Huihui & Han, Wenting & Niu, Yaxiao & Chávez, José L. & Ma, Weitong, 2021. "The mean value of gaussian distribution of excess green index: A new crop water stress indicator," Agricultural Water Management, Elsevier, vol. 251(C).
    18. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    19. M.R. Khaledian & J.C. Mailhol & P. Ruelle & J.L. Rosique, 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Post-Print hal-00454543, HAL.
    20. Chen, Jiazhou & Lin, Lirong & Lü, Guoan, 2010. "An index of soil drought intensity and degree: An application on corn and a comparison with CWSI," Agricultural Water Management, Elsevier, vol. 97(6), pages 865-871, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:107:y:2012:i:c:p:122-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.