IDEAS home Printed from https://ideas.repec.org/a/bla/inecol/v26y2022i3p875-890.html
   My bibliography  Save this article

Bottom‐up estimation of material stocks and flows in Toronto's road network

Author

Listed:
  • Bradley Kloostra
  • Benjamin Makarchuk
  • Shoshanna Saxe

Abstract

Improving resource efficiency is critical to reduce the environmental impacts of constructing and maintaining the built environment. A growing body of research has been investigating where and for what purposes construction materials are consumed in cities. Much of this existing research relies on archetypes to simplify the analysis of the large number of structures, and city‐scale bottom‐up material stock assessments mostly examine buildings to the exclusion of other urban structures. In this research we examine the effectiveness of pavement archetypes compared to spatially disaggregate pavement material data from a municipal pavement management database for stock estimation and find that the use of archetypes can lead to asymmetric estimation errors (i.e., variability in prediction error among materials and across the city's geography). We use Toronto's road network as a case study and estimate the stocks of concrete, asphalt, and granular materials. The stock of materials is unevenly distributed, in terms of both material type (uneven distribution of concrete vs. asphalt) and when normalized by area and population. In general, the use of archetypes tends to obscure spatial variability in material use, even across a relatively limited geographical area like Toronto and relatively consistent product like roads. We argue that the uncertainty inherent in the use of archetypes is significant and should be accounted for in bottom‐up urban material flow analysis, that governments are in a unique position to provide high quality data for study, and that efforts should be made to capture, collate, and share this information more widely.

Suggested Citation

  • Bradley Kloostra & Benjamin Makarchuk & Shoshanna Saxe, 2022. "Bottom‐up estimation of material stocks and flows in Toronto's road network," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 875-890, June.
  • Handle: RePEc:bla:inecol:v:26:y:2022:i:3:p:875-890
    DOI: 10.1111/jiec.13229
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/jiec.13229
    Download Restriction: no

    File URL: https://libkey.io/10.1111/jiec.13229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Niko Heeren & Stefanie Hellweg, 2019. "Tracking Construction Material over Space and Time: Prospective and Geo‐referenced Modeling of Building Stocks and Construction Material Flows," Journal of Industrial Ecology, Yale University, vol. 23(1), pages 253-267, February.
    2. Andreas Gassner & Jakob Lederer & Johann Fellner, 2020. "Material stock development of the transport sector in the city of Vienna," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1364-1378, December.
    3. Matthew Lesch, 2018. "Legacies of the Megacity: Toronto’s Amalgamation 20 Years Later," IMFG Forum 09, University of Toronto, Institute on Municipal Finance and Governance.
    4. Christopher Kennedy & John Cuddihy & Joshua Engel‐Yan, 2007. "The Changing Metabolism of Cities," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 43-59, April.
    5. Thi Cuc Nguyen & Tomer Fishman & Alessio Miatto & Hiroki Tanikawa, 2019. "Estimating the Material Stock of Roads: The Vietnamese Case Study," Journal of Industrial Ecology, Yale University, vol. 23(3), pages 663-673, June.
    6. Zhi Cao & Lei Shen & Shuai Zhong & Litao Liu & Hanxiao Kong & Yanzhi Sun, 2018. "A Probabilistic Dynamic Material Flow Analysis Model for Chinese Urban Housing Stock," Journal of Industrial Ecology, Yale University, vol. 22(2), pages 377-391, April.
    7. Dominik Wiedenhofer & Julia K. Steinberger & Nina Eisenmenger & Willi Haas, 2015. "Maintenance and Expansion: Modeling Material Stocks and Flows for Residential Buildings and Transportation Networks in the EU25," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 538-551, August.
    8. Chiu, Chui-Te & Hsu, Tseng-Hsing & Yang, Wan-Fa, 2008. "Life cycle assessment on using recycled materials for rehabilitating asphalt pavements," Resources, Conservation & Recycling, Elsevier, vol. 52(3), pages 545-556.
    9. Janet L. Reyna & Mikhail V. Chester, 2015. "The Growth of Urban Building Stock: Unintended Lock-in and Embedded Environmental Effects," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 524-537, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William Mihkelson & Hadi Arbabi & Stephen Hincks & Danielle Densley Tingley, 2024. "Built‐environment stocks in the context of a master‐planned city: A case study of Chandigarh, India," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 573-588, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruirui Zhang & Jing Guo & Dong Yang & Hiroaki Shirakawa & Feng Shi & Hiroki Tanikawa, 2022. "What matters most to the material intensity coefficient of buildings? Random forest‐based evidence from China," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1809-1823, October.
    2. Ruichang Mao & Yi Bao & Huabo Duan & Gang Liu, 2021. "Global urban subway development, construction material stocks, and embodied carbon emissions," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-11, December.
    3. Liang Yuan & Weisheng Lu & Yijie Wu, 2023. "Characterizing the spatiotemporal evolution of building material stock in China's Greater Bay Area: A statistical regression method," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1553-1566, December.
    4. Jakob Lederer & Andreas Gassner & Florian Keringer & Ursula Mollay & Christoph Schremmer & Johann Fellner, 2019. "Material Flows and Stocks in the Urban Building Sector: A Case Study from Vienna for the Years 1990–2015," Sustainability, MDPI, vol. 12(1), pages 1-25, December.
    5. Daniel Grossegger, 2022. "Material flow analysis study of asphalt in an Austrian municipality," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 996-1009, June.
    6. Francisco Martin del Campo & Simron Jit Singh & Tomer Fishman & Adelle Thomas & Michael Drescher, 2023. "The Bahamas at risk: Material stocks, sea‐level rise, and the implications for development," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1165-1183, August.
    7. Jing Guo & Tomer Fishman & Yao Wang & Alessio Miatto & Wendy Wuyts & Licheng Zheng & Heming Wang & Hiroki Tanikawa, 2021. "Urban development and sustainability challenges chronicled by a century of construction material flows and stocks in Tiexi, China," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 162-175, February.
    8. Fishman, Tomer & Schandl, Heinz & Tanikawa, Hiroki, 2015. "The socio-economic drivers of material stock accumulation in Japan's prefectures," Ecological Economics, Elsevier, vol. 113(C), pages 76-84.
    9. Keisuke Yoshida & Keijiro Okuoka & Alessio Miatto & Liselotte Schebek & Hiroki Tanikawa, 2019. "Estimation of Mining and Landfilling Activities with Associated Overburden through Satellite Data: Germany 2000–2010," Resources, MDPI, vol. 8(3), pages 1-17, July.
    10. Miatto, Alessio & Schandl, Heinz & Tanikawa, Hiroki, 2017. "How important are realistic building lifespan assumptions for material stock and demolition waste accounts?," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 143-154.
    11. Yupeng Liu & Jiajia Li & Wei‐Qiang Chen & Lulu Song & Shaoqing Dai, 2022. "Quantifying urban mass gain and loss by a GIS‐based material stocks and flows analysis," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1051-1060, June.
    12. Carine Lausselet & Johana Paola Forero Urrego & Eirik Resch & Helge Brattebø, 2021. "Temporal analysis of the material flows and embodied greenhouse gas emissions of a neighborhood building stock," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 419-434, April.
    13. Andreas Gassner & Jakob Lederer & Johann Fellner, 2020. "Material stock development of the transport sector in the city of Vienna," Journal of Industrial Ecology, Yale University, vol. 24(6), pages 1364-1378, December.
    14. Nguyen, Thi Cuc & Miatto, Alessio & Kim, Junbeum, 2024. "Material services in an emerging economy: Tracking resource utilization in Vietnam's shelter, thermal comfort, and road transportation," Ecological Economics, Elsevier, vol. 220(C).
    15. Jakob Lederer & Johann Fellner & Andreas Gassner & Karin Gruhler & Georg Schiller, 2021. "Determining the material intensities of buildings selected by random sampling: A case study from Vienna," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 848-863, August.
    16. Yang, Xining & Hu, Mingming & Tukker, Arnold & Zhang, Chunbo & Huo, Tengfei & Steubing, Bernhard, 2022. "A bottom-up dynamic building stock model for residential energy transition: A case study for the Netherlands," Applied Energy, Elsevier, vol. 306(PA).
    17. William Mihkelson & Hadi Arbabi & Stephen Hincks & Danielle Densley Tingley, 2024. "Built‐environment stocks in the context of a master‐planned city: A case study of Chandigarh, India," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 573-588, June.
    18. Ling Zhang & Qingqing Lu & Zengwei Yuan & Songyan Jiang & Huijun Wu, 2023. "A bottom‐up modeling of metabolism of the residential building system in China toward 2050," Journal of Industrial Ecology, Yale University, vol. 27(2), pages 587-600, April.
    19. Augiseau, Vincent & Barles, Sabine, 2017. "Studying construction materials flows and stock: A review," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 153-164.
    20. Luis Gabriel Carmona & Kai Whiting & Helmut Haberl & Tânia Sousa, 2021. "The use of steel in the United Kingdom's transport sector: A stock–flow–service nexus case study," Journal of Industrial Ecology, Yale University, vol. 25(1), pages 125-143, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:26:y:2022:i:3:p:875-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.