IDEAS home Printed from https://ideas.repec.org/a/eee/recore/v54y2010i12p1170-1176.html
   My bibliography  Save this article

Life cycle analysis (LCA) for the incorporation of rice husk ash in mortar coating

Author

Listed:
  • Moraes, Carlos Alberto Mendes
  • Kieling, Amanda Gonçalves
  • Caetano, Marcelo Oliveira
  • Gomes, Luciana Paulo

Abstract

Considering that the civil construction segment is responsible for a significant amount of the environmental impact, once it consumes a large amount of natural resources and energy, the incorporation of waste in the process brings sustainable benefits for the companies as well as for society. In addition, the reduction of the useful life of mortar coating related to the lack of adherence to the substrate provokes a large generation of waste, increasing the environmental liability of the respective industry. This study aimed to determine the technical and environmental viability of the incorporation of rice husk ash (RHA) waste in mortar coatings, in order to reduce the consumption of natural resources and improve the conditions of adherence of the cementitious matrix. For this evaluation, mechanical tests were carried out to test the adherence to the substrate, besides a survey of all the processes related to mortar coating production, from natural resources extraction till the application of the product and its consequent impact. Finally it was used the life cycle analysis (LCA) tool to evaluate the environmental issue. The results showed an increase of 100% of bond strength for the mortars with 5% addition of RHA, and it was identified, among the processes surveyed, a smaller number of significant impacts in relation to the mortar with no addition. It is noticed that, for the conditions of this study, the mortars with RHA addition present better technical and environmental performance compared to the usual mortars.

Suggested Citation

  • Moraes, Carlos Alberto Mendes & Kieling, Amanda Gonçalves & Caetano, Marcelo Oliveira & Gomes, Luciana Paulo, 2010. "Life cycle analysis (LCA) for the incorporation of rice husk ash in mortar coating," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1170-1176.
  • Handle: RePEc:eee:recore:v:54:y:2010:i:12:p:1170-1176
    DOI: 10.1016/j.resconrec.2010.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092134491000087X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resconrec.2010.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Navia, R. & Rivela, B. & Lorber, K.E. & Méndez, R., 2006. "Recycling contaminated soil as alternative raw material in cement facilities: Life cycle assessment," Resources, Conservation & Recycling, Elsevier, vol. 48(4), pages 339-356.
    2. Güereca, Leonor Patricia & Gassó, Santiago & Baldasano, José María & Jiménez-Guerrero, Pedro, 2006. "Life cycle assessment of two biowaste management systems for Barcelona, Spain," Resources, Conservation & Recycling, Elsevier, vol. 49(1), pages 32-48.
    3. Lee, Kun-Mo & Park, Pil-Ju, 2005. "Estimation of the environmental credit for the recycling of granulated blast furnace slag based on LCA," Resources, Conservation & Recycling, Elsevier, vol. 44(2), pages 139-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lim, Jeng Shiun & Abdul Manan, Zainuddin & Hashim, Haslenda & Wan Alwi, Sharifah Rafidah, 2013. "Towards an integrated, resource-efficient rice mill complex," Resources, Conservation & Recycling, Elsevier, vol. 75(C), pages 41-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saade, Marcella Ruschi Mendes & Silva, Maristela Gomes da & Gomes, Vanessa, 2015. "Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 40-47.
    2. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    3. Xiaoquan Gao & Cuiping Liao & Xiaoling Qi & Yulong Zhang, 2023. "A Scenario Simulation of Material Substitution in the Cement Industry under the Carbon Neutral Strategy: A Case Study of Guangdong," Sustainability, MDPI, vol. 15(7), pages 1-14, March.
    4. Colón, Joan & Martínez-Blanco, Julia & Gabarrell, Xavier & Artola, Adriana & Sánchez, Antoni & Rieradevall, Joan & Font, Xavier, 2010. "Environmental assessment of home composting," Resources, Conservation & Recycling, Elsevier, vol. 54(11), pages 893-904.
    5. Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
    6. Yıldız-Geyhan, Eren & Yılan-Çiftçi, Gülşah & Altun-Çiftçioğlu, Gökçen Alev & Neşet Kadırgan, Mehmet Arif, 2016. "Environmental analysis of different packaging waste collection systems for Istanbul – Turkey case study," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 27-37.
    7. Jun Li & Lixian Wang & Yong Chi & Zhaozhi Zhou & Yuanjun Tang & Hui Zhang, 2021. "Life Cycle Assessment of Advanced Circulating Fluidized Bed Municipal Solid Waste Incineration System from an Environmental and Exergetic Perspective," IJERPH, MDPI, vol. 18(19), pages 1-16, October.
    8. Zaid M. Aldhafeeri & Hatem Alhazmi, 2022. "Sustainability Assessment of Municipal Solid Waste in Riyadh, Saudi Arabia, in the Framework of Circular Economy Transition," Sustainability, MDPI, vol. 14(9), pages 1-18, April.
    9. Kubilay Kaptan & Sandra Cunha & José Aguiar, 2024. "A Review: Construction and Demolition Waste as a Novel Source for CO 2 Reduction in Portland Cement Production for Concrete," Sustainability, MDPI, vol. 16(2), pages 1-50, January.
    10. Chen, C. & Habert, G. & Bouzidi, Y. & Jullien, A. & Ventura, A., 2010. "LCA allocation procedure used as an incitative method for waste recycling: An application to mineral additions in concrete," Resources, Conservation & Recycling, Elsevier, vol. 54(12), pages 1231-1240.
    11. Martínez-Blanco, Julia & Muñoz, Pere & Antón, Assumpció & Rieradevall, Joan, 2009. "Life cycle assessment of the use of compost from municipal organic waste for fertilization of tomato crops," Resources, Conservation & Recycling, Elsevier, vol. 53(6), pages 340-351.
    12. Sayagh, Shahinaz & Ventura, Anne & Hoang, Tung & François, Denis & Jullien, Agnès, 2010. "Sensitivity of the LCA allocation procedure for BFS recycled into pavement structures," Resources, Conservation & Recycling, Elsevier, vol. 54(6), pages 348-358.
    13. Oluwafemi E. Ige & Oludolapo A. Olanrewaju, 2023. "Comparative Life Cycle Assessment of Different Portland Cement Types in South Africa," Clean Technol., MDPI, vol. 5(3), pages 1-20, July.
    14. Li, Gang & Zhu, Weidong, 2023. "Tidal current energy harvesting technologies: A review of current status and life cycle assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:recore:v:54:y:2010:i:12:p:1170-1176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kai Meng (email available below). General contact details of provider: https://www.journals.elsevier.com/resources-conservation-and-recycling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.