IDEAS home Printed from https://ideas.repec.org/a/ddj/fseeai/y2022i3p178-185.html
   My bibliography  Save this article

Prediction of Business Bankruptcy with the Help of Extreme Gradient Increase

Author

Listed:
  • Catalin-Emanuel CIOBOTA

    (Valahia University of Targoviste, Romania)

  • Manuela-Violeta TUREATCA

    (Dunarea de Jos University of Galati, Romania)

Abstract

Financial institutions use business failure forecasting models to manage their investments. The accuracy of the forecast is an important factor in determining how much capital is needed to cover credit losses. The majority of studies use traditional statistical methods to model business failures (e.g., discriminant analysis and logistic regression). Models constructed are usually quite inaccurate, however. It is due to the imbalance between the classes of training samples (bankruptcies account for a small percentage of all firms) that are used to construct the models. Currently, various machine learning methods such as the random forest method and the gradient boosting method are widespread. In this study, the main focus is on using extreme gradient growth to predict bankruptcy. Extreme gradient boosting, using LASSO or Ridge regularization, penalizes complex models to avoid overfitting. Also, during training, extreme gradient boosting fills in the missing values in the data set depending on the amount of loss. In this article, in order to increase the efficiency of extreme degree growth, it is proposed to use SMOTE technology to improve class balance. The quality values of the solutions obtained by the improved extremal degree increase are compared with the solutions obtained by other methods.

Suggested Citation

  • Catalin-Emanuel CIOBOTA & Manuela-Violeta TUREATCA, 2022. "Prediction of Business Bankruptcy with the Help of Extreme Gradient Increase," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 3, pages 178-185.
  • Handle: RePEc:ddj:fseeai:y:2022:i:3:p:178-185
    DOI: 10.35219/eai15840409301
    as

    Download full text from publisher

    File URL: http://eia.feaa.ugal.ro/images/eia/2022_3/CiobotaTureatca.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.35219/eai15840409301?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wiginton, John C., 1980. "A Note on the Comparison of Logit and Discriminant Models of Consumer Credit Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 15(3), pages 757-770, September.
    2. Deakin, Eb, 1972. "Discriminant Analysis Of Predictors Of Business Failure," Journal of Accounting Research, Wiley Blackwell, vol. 10(1), pages 167-179.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    5. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    6. Altman, Edward I. & Marco, Giancarlo & Varetto, Franco, 1994. "Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience)," Journal of Banking & Finance, Elsevier, vol. 18(3), pages 505-529, May.
    7. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    8. Martin, Daniel, 1977. "Early warning of bank failure : A logit regression approach," Journal of Banking & Finance, Elsevier, vol. 1(3), pages 249-276, November.
    9. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Fanyin & Fu, Lijun & Li, Zhiyong & Xu, Jiawei, 2022. "The recurrence of financial distress: A survival analysis," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1100-1115.
    2. Fayçal Mraihi, 2016. "Distressed Company Prediction Using Logistic Regression: Tunisian’s Case," Quarterly Journal of Business Studies, Research Academy of Social Sciences, vol. 2(1), pages 34-54.
    3. fernández, María t. Tascón & gutiérrez, Francisco J. Castaño, 2012. "Variables y Modelos Para La Identificación y Predicción Del Fracaso Empresarial: Revisión de La Investigación Empírica Reciente," Revista de Contabilidad - Spanish Accounting Review, Elsevier, vol. 15(1), pages 7-58.
    4. Matthew Smith & Francisco Alvarez, 2022. "Predicting Firm-Level Bankruptcy in the Spanish Economy Using Extreme Gradient Boosting," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 263-295, January.
    5. repec:hum:wpaper:sfb649dp2013-037 is not listed on IDEAS
    6. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2009. "Variable selection and oversampling in the use of smooth support vector machines for predicting the default risk of companies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 512-534.
    7. repec:diw:diwwpp:dp416 is not listed on IDEAS
    8. Peresetsky, A. A., 2011. "What factors drive the Russian banks license withdrawal," MPRA Paper 41507, University Library of Munich, Germany.
    9. du Jardin, Philippe, 2010. "Predicting bankruptcy using neural networks and other classification methods: the influence of variable selection techniques on model accuracy," MPRA Paper 44375, University Library of Munich, Germany.
    10. Anatoly Peresetsky & Alexandr Karminsky & Sergei Golovan, 2011. "Probability of default models of Russian banks," Economic Change and Restructuring, Springer, vol. 44(4), pages 297-334, November.
    11. du Jardin, Philippe, 2012. "The influence of variable selection methods on the accuracy of bankruptcy prediction models," MPRA Paper 44383, University Library of Munich, Germany.
    12. Härdle, Wolfgang Karl & Prastyo, Dedy Dwi & Hafner, Christian, 2012. "Support vector machines with evolutionary feature selection for default prediction," SFB 649 Discussion Papers 2012-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    13. Andrea Bedin & Monica Billio & Michele Costola & Loriana Pelizzon, 2019. "Credit Scoring in SME Asset-Backed Securities: An Italian Case Study," JRFM, MDPI, vol. 12(2), pages 1-28, May.
    14. Sun, Xiaojun & Lei, Yalin, 2021. "Research on financial early warning of mining listed companies based on BP neural network model," Resources Policy, Elsevier, vol. 73(C).
    15. Teija Laitinen & Maria Kankaanpaa, 1999. "Comparative analysis of failure prediction methods: the Finnish case," European Accounting Review, Taylor & Francis Journals, vol. 8(1), pages 67-92.
    16. Dimitras, A. I. & Zanakis, S. H. & Zopounidis, C., 1996. "A survey of business failures with an emphasis on prediction methods and industrial applications," European Journal of Operational Research, Elsevier, vol. 90(3), pages 487-513, May.
    17. Wolfgang Härdle & Yuh-Jye Lee & Dorothea Schäfer & Yi-Ren Yeh, 2007. "The Default Risk of Firms Examined with Smooth Support Vector Machines," Discussion Papers of DIW Berlin 757, DIW Berlin, German Institute for Economic Research.
    18. Пересецкий А.А., 2007. "Методы Оценки Вероятности Дефолта Банков," Журнал Экономика и математические методы (ЭММ), Центральный Экономико-Математический Институт (ЦЭМИ), vol. 43(3), июль.
    19. Parag C. Pendharkar, 2011. "Probabilistic Approaches For Credit Screening And Bankruptcy Prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 18(4), pages 177-193, October.
    20. Şaban Çelik, 2013. "Micro Credit Risk Metrics: A Comprehensive Review," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 20(4), pages 233-272, October.
    21. Goriunov Dmytro & Venzhyk Katerina, 2013. "Loan Default Prediction in Ukrainian Retail Banking," EERC Working Paper Series 13/07e, EERC Research Network, Russia and CIS.
    22. repec:hum:wpaper:sfb649dp2012-030 is not listed on IDEAS
    23. Fayçal Mraihi & Inane Kanzari & Mohamed Tahar Rajhi, 2015. "Development of a Prediction Model of Failure in Tunisian Companies: Comparison between Logistic Regression and Support Vector Machines," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(3), pages 184-205.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ddj:fseeai:y:2022:i:3:p:178-185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gianina Mihai (email available below). General contact details of provider: https://edirc.repec.org/data/fegalro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.