IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v15y2000i1-2p107-43.html
   My bibliography  Save this article

Credit Risk Assessment Using Statistical and Machine Learning: Basic Methodology and Risk Modeling Applications

Author

Listed:
  • Galindo, J
  • Tamayo, P

Abstract

No abstract is available for this item.

Suggested Citation

  • Galindo, J & Tamayo, P, 2000. "Credit Risk Assessment Using Statistical and Machine Learning: Basic Methodology and Risk Modeling Applications," Computational Economics, Springer;Society for Computational Economics, vol. 15(1-2), pages 107-143, April.
  • Handle: RePEc:kap:compec:v:15:y:2000:i:1-2:p:107-43
    as

    Download full text from publisher

    File URL: http://journals.kluweronline.com/issn/0927-7099/contents
    Download Restriction: Access to the full text of the articles in this series is restricted.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alina Mihaela Dima, 2009. "Operational Risk Assesement Tools for Quality Management in Banking Services," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 11(26), pages 364-372, June.
    2. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    3. Lorenzo Gai & Federica Ielasi, 2014. "Operational drivers affecting credit risk of mutual guarantee institutions," Journal of Risk Finance, Emerald Group Publishing, vol. 15(3), pages 275-293, May.
    4. Angelini, Eliana & di Tollo, Giacomo & Roli, Andrea, 2008. "A neural network approach for credit risk evaluation," The Quarterly Review of Economics and Finance, Elsevier, vol. 48(4), pages 733-755, November.
    5. Pedro N. Rodriguez & Arnulfo Rodriguez, 2006. "Understanding and predicting sovereign debt rescheduling: a comparison of the areas under receiver operating characteristic curves," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 459-479.
    6. Hiroshi Konno & Yoshihiro Takaya, 2010. "Multi-step methods for choosing the best set of variables in regression analysis," Computational Optimization and Applications, Springer, vol. 46(3), pages 417-426, July.
    7. Fitzpatrick, Trevor & Mues, Christophe, 2016. "An empirical comparison of classification algorithms for mortgage default prediction: evidence from a distressed mortgage market," European Journal of Operational Research, Elsevier, vol. 249(2), pages 427-439.
    8. Alina Mihaela Dima & Simona Vasilache, 2016. "Credit Risk modeling for Companies Default Prediction using Neural Networks," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 127-143, September.
    9. Hiroshi Konno & Masato Saito, 2013. "Classification of companies using maximal margin ellipsoidal surfaces," Computational Optimization and Applications, Springer, vol. 55(2), pages 469-480, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:15:y:2000:i:1-2:p:107-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.