IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v149y2014icp28-36.html
   My bibliography  Save this article

The data-driven newsvendor with censored demand observations

Author

Listed:
  • Sachs, Anna-Lena
  • Minner, Stefan

Abstract

Motivated by data from a large European retail chain, we tackle the newsvendor problem with censored demand observations by a distribution-free model based on a data-driven approach. The model estimates the optimal inventory levels as a linear function of exogenous variables, e.g., price or temperature. To improve the forecast accuracy, we simultaneously estimate unobservable lost sales, determine the coefficients of the exogenous variables which drive demand, and calculate the optimal order quantity. Since demand exceeding supply cannot be recorded, we use the timing of (hourly) sales occurrences to establish (daily) sales patterns. These sales patterns allow conclusions on the amount of unsatisfied demand and thus the true customer demand. To determine the coefficients of the inventory function, we formulate a Linear Programming model that balances inventory holding and penalty costs based on the censored demand observations. In a numerical study with data generated from the normal and the negative binomial distribution, we compare our model with other parametric and non-parametric estimation approaches. We evaluate the performance in terms of inventory and service level for (non-)price-dependent demands and different censoring levels. We find that the data-driven newsvendor model copes especially well with highly censored data and price-dependent demand. In most settings with price-dependent demand, it achieves similar or higher service levels by holding lower inventories than other benchmark approaches from the literature. Finally, we show that the non-parametric approaches are better than the parametric ones based on real data with several exogenous variables where the true demand distribution is unknown.

Suggested Citation

  • Sachs, Anna-Lena & Minner, Stefan, 2014. "The data-driven newsvendor with censored demand observations," International Journal of Production Economics, Elsevier, vol. 149(C), pages 28-36.
  • Handle: RePEc:eee:proeco:v:149:y:2014:i:c:p:28-36
    DOI: 10.1016/j.ijpe.2013.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731300203X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harvey M. Wagner, 2002. "And Then There Were None," Operations Research, INFORMS, vol. 50(1), pages 217-226, February.
    2. Ad Ridder & Erwin van der Laan & Marc Salomon, 1998. "How Larger Demand Variability May Lead to Lower Costs in the Newsvendor Problem," Operations Research, INFORMS, vol. 46(6), pages 934-936, December.
    3. Berk, Emre & Gurler, Ulku & Levine, Richard A., 2007. "Bayesian demand updating in the lost sales newsvendor problem: A two-moment approximation," European Journal of Operational Research, Elsevier, vol. 182(1), pages 256-281, October.
    4. SPRINGAEL, Johan & VAN NIEUWENHUYSE, Inneke, 2005. "A lost sales inventory model with a compound poisson demand pattern," Working Papers 2005017, University of Antwerp, Faculty of Business and Economics.
    5. Hosoda, Takamichi & Disney, Stephen M., 2009. "Impact of market demand mis-specification on a two-level supply chain," International Journal of Production Economics, Elsevier, vol. 121(2), pages 739-751, October.
    6. Eric T. Anderson & Gavan J. Fitzsimons & Duncan Simester, 2006. "Measuring and Mitigating the Costs of Stockouts," Management Science, INFORMS, vol. 52(11), pages 1751-1763, November.
    7. Xiangwen Lu & Jing-Sheng Song & Kaijie Zhu, 2008. "Analysis of Perishable-Inventory Systems with Censored Demand Data," Operations Research, INFORMS, vol. 56(4), pages 1034-1038, August.
    8. Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
    9. Nicholas C. Petruzzi & Maqbool Dada, 1999. "Pricing and the Newsvendor Problem: A Review with Extensions," Operations Research, INFORMS, vol. 47(2), pages 183-194, April.
    10. Khouja, Moutaz J., 2000. "Optimal ordering, discounting, and pricing in the single-period problem," International Journal of Production Economics, Elsevier, vol. 65(2), pages 201-216, April.
    11. Lau, Hon-Shiang & Hing-Ling Lau, Amy, 1996. "Estimating the demand distributions of single-period items having frequent stockouts," European Journal of Operational Research, Elsevier, vol. 92(2), pages 254-265, July.
    12. Dimitris Bertsimas & Aurélie Thiele, 2006. "A Robust Optimization Approach to Inventory Theory," Operations Research, INFORMS, vol. 54(1), pages 150-168, February.
    13. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, September.
    14. Lau, Hon-Shiang & Lau, Amy Hing-Ling, 1997. "Some results on implementing a multi-item multi-constraint single-period inventory model," International Journal of Production Economics, Elsevier, vol. 48(2), pages 121-128, January.
    15. Vikram Tiwari & Srinagesh Gavirneni, 2007. "ASP, The Art and Science of Practice: Recoupling Inventory Control Research and Practice: Guidelines for Achieving Synergy," Interfaces, INFORMS, vol. 37(2), pages 176-186, April.
    16. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    2. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    3. Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
    4. Albiński, Szymon & Fontaine, Pirmin & Minner, Stefan, 2018. "Performance analysis of a hybrid bike sharing system: A service-level-based approach under censored demand observations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 59-69.
    5. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    6. Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
    7. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    8. Özgün Turgut & Florian Taube & Stefan Minner, 2018. "Data-driven retail inventory management with backroom effect," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 945-968, October.
    9. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2021. "Distributional regression for demand forecasting in e-grocery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 831-842.
    10. Trapero, Juan R. & de Frutos, Enrique Holgado & Pedregal, Diego J., 2024. "Demand forecasting under lost sales stock policies," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1055-1068.
    11. Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
    2. Serrano, Breno & Minner, Stefan & Schiffer, Maximilian & Vidal, Thibaut, 2024. "Bilevel optimization for feature selection in the data-driven newsvendor problem," European Journal of Operational Research, Elsevier, vol. 315(2), pages 703-714.
    3. Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
    4. Vishal Gaur & Young-Hoon Park, 2007. "Asymmetric Consumer Learning and Inventory Competition," Management Science, INFORMS, vol. 53(2), pages 227-240, February.
    5. Ma, Shouyu & Jemai, Zied & Bai, Qingguo, 2022. "Optimal pricing and ordering decisions for a retailer using multiple discounts," European Journal of Operational Research, Elsevier, vol. 299(3), pages 1177-1192.
    6. Lee, Eunji & Minner, Stefan, 2024. "How power structure and markup schemes impact supply chain channel efficiency under price-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 318(1), pages 297-309.
    7. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    8. Zhang, Michael & Bell, Peter C., 2007. "The effect of market segmentation with demand leakage between market segments on a firm's price and inventory decisions," European Journal of Operational Research, Elsevier, vol. 182(2), pages 738-754, October.
    9. P-S You, 2003. "Dynamic pricing of inventory with cancellation demand," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1093-1101, October.
    10. Wen, Xin & Choi, Tsan-Ming & Chung, Sai-Ho, 2019. "Fashion retail supply chain management: A review of operational models," International Journal of Production Economics, Elsevier, vol. 207(C), pages 34-55.
    11. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    12. Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2021. "Distributional regression for demand forecasting in e-grocery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 831-842.
    13. Kevork, Ilias S., 2010. "Estimating the optimal order quantity and the maximum expected profit for single-period inventory decisions," Omega, Elsevier, vol. 38(3-4), pages 218-227, June.
    14. Tianhu Deng & Zuo-Jun Max Shen & J. George Shanthikumar, 2014. "Statistical Learning of Service-Dependent Demand in a Multiperiod Newsvendor Setting," Operations Research, INFORMS, vol. 62(5), pages 1064-1076, October.
    15. Liu, Congzheng & Letchford, Adam N. & Svetunkov, Ivan, 2022. "Newsvendor problems: An integrated method for estimation and optimisation," European Journal of Operational Research, Elsevier, vol. 300(2), pages 590-601.
    16. P-S You, 2005. "Inventory policy for products with price and time-dependent demands," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(7), pages 870-873, July.
    17. Karel H. van Donselaar & Vishal Gaur & Tom van Woensel & Rob A. C. M. Broekmeulen & Jan C. Fransoo, 2010. "Ordering Behavior in Retail Stores and Implications for Automated Replenishment," Management Science, INFORMS, vol. 56(5), pages 766-784, May.
    18. Karakul, M., 2008. "Joint pricing and procurement of fashion products in the existence of clearance markets," International Journal of Production Economics, Elsevier, vol. 114(2), pages 487-506, August.
    19. Xu, Minghui & Chen, Youhua (Frank) & Xu, Xiaolin, 2010. "The effect of demand uncertainty in a price-setting newsvendor model," European Journal of Operational Research, Elsevier, vol. 207(2), pages 946-957, December.
    20. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:149:y:2014:i:c:p:28-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.