IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i4p849-d1337469.html
   My bibliography  Save this article

Neural Network Control of Perishable Inventory with Fixed Shelf Life Products and Fuzzy Order Refinement under Time-Varying Uncertain Demand

Author

Listed:
  • Ewelina Chołodowicz

    (Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

  • Przemysław Orłowski

    (Faculty of Electrical Engineering, West Pomeranian University of Technology, 70-310 Szczecin, Poland)

Abstract

Many control algorithms have been applied to manage the flow of products in supply chains. However, in the era of thriving globalization, even a small disruption can be fatal for some companies. On the other hand, the rising environmental impact of a rapid industry is imposing limitations on energy usage and waste generation. Therefore, taking into account the mentioned perspectives, there is a need to explore the research directions that concern product perishability together with different demand patterns and their uncertain character. This study aims to propose a robust control approach that combines neural networks and optimal controller tuning with the use of both different demand patterns and fuzzy logic. Firstly, the demand forecast is generated, following which the parameters of the neural controller are optimized, taking into account the different demand patterns and uncertainty. As part of the verification of the designated controller, the sensitivity to parameter changes has been determined using the OAT method. It turns out that the proposed approach can provide significant waste reductions compared to the well-known POUT method while maintaining low stocks, a high fill rate, and providing lower sensitivity for parameter changes in most considered cases. The effectiveness of this approach is verified by using a dataset from a worldwide retailer. The simulation results show that the proposed approach can effectively improve the control of uncertain perishable inventories.

Suggested Citation

  • Ewelina Chołodowicz & Przemysław Orłowski, 2024. "Neural Network Control of Perishable Inventory with Fixed Shelf Life Products and Fuzzy Order Refinement under Time-Varying Uncertain Demand," Energies, MDPI, vol. 17(4), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:849-:d:1337469
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/4/849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/4/849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. A A Syntetos & J E Boylan & J D Croston, 2005. "On the categorization of demand patterns," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 495-503, May.
    2. Boute, Robert N. & Gijsbrechts, Joren & van Jaarsveld, Willem & Vanvuchelen, Nathalie, 2022. "Deep reinforcement learning for inventory control: A roadmap," European Journal of Operational Research, Elsevier, vol. 298(2), pages 401-412.
    3. Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
    4. Ghobbar, A.A & Friend, C.H, 2002. "Sources of intermittent demand for aircraft spare parts within airline operations," Journal of Air Transport Management, Elsevier, vol. 8(4), pages 221-231.
    5. Saeideh Farajzadeh Bardeji & Amir Mohammad Fakoor Saghih & Alireza Pooya & Seyed-Hadi Mirghaderi, 2020. "Perishable inventory management using GA-ANN and ICA-ANN," International Journal of Procurement Management, Inderscience Enterprises Ltd, vol. 13(3), pages 347-382.
    6. Ensafian, Hamidreza & Yaghoubi, Saeed, 2017. "Robust optimization model for integrated procurement, production and distribution in platelet supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 32-55.
    7. Andreas Thorsen & Tao Yao, 2017. "Robust inventory control under demand and lead time uncertainty," Annals of Operations Research, Springer, vol. 257(1), pages 207-236, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    2. Gutierrez, Rafael S. & Solis, Adriano O. & Mukhopadhyay, Somnath, 2008. "Lumpy demand forecasting using neural networks," International Journal of Production Economics, Elsevier, vol. 111(2), pages 409-420, February.
    3. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    4. Syntetos, Aris A., 2007. "A note on managing lumpy demand for aircraft spare parts," Journal of Air Transport Management, Elsevier, vol. 13(3), pages 166-167.
    5. A A Syntetos & M Z Babai & Y Dallery & R Teunter, 2009. "Periodic control of intermittent demand items: theory and empirical analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 611-618, May.
    6. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    7. Costantino, Francesco & Di Gravio, Giulio & Patriarca, Riccardo & Petrella, Lea, 2018. "Spare parts management for irregular demand items," Omega, Elsevier, vol. 81(C), pages 57-66.
    8. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    9. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2019. "A supporting framework for maintenance capacity planning and scheduling: Development and application in the aircraft MRO industry," International Journal of Production Economics, Elsevier, vol. 218(C), pages 1-15.
    10. Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
    11. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    12. Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
    13. Boylan, John E. & Babai, M. Zied, 2016. "On the performance of overlapping and non-overlapping temporal demand aggregation approaches," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 136-144.
    14. Syntetos, A.A. & Teunter, R.H., 2014. "On the calculation of safety stocks," Research Report 14003-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    15. Tian, Xin & Wang, Haoqing & E, Erjiang, 2021. "Forecasting intermittent demand for inventory management by retailers: A new approach," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    16. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    17. Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
    18. Moon, Seongmin & Simpson, Andrew & Hicks, Christian, 2013. "The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand," International Journal of Production Economics, Elsevier, vol. 143(2), pages 449-454.
    19. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    20. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:4:p:849-:d:1337469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.