IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v118y2009i2p387-397.html
   My bibliography  Save this article

Models of the transient behaviour of production units to optimize the aggregate material flow

Author

Listed:
  • Missbauer, Hubert

Abstract

The purpose of this paper is twofold: First, it aims at providing a link between order release mechanisms based on the workload control concept on the one hand and models for aggregate order release planning that optimize the aggregate material flow through a production unit on the other hand. We argue that both approaches aim at optimizing the material flow through a production unit, following a rule-based approach or an optimization-based approach, respectively. Secondly, it highlights the limitations of the models of the latter category that are available today and presents a direction for improvement. We argue that aggregate order release planning models should be based on models of the transient behaviour of queueing networks, and we present one way to accomplish this.

Suggested Citation

  • Missbauer, Hubert, 2009. "Models of the transient behaviour of production units to optimize the aggregate material flow," International Journal of Production Economics, Elsevier, vol. 118(2), pages 387-397, April.
  • Handle: RePEc:eee:proeco:v:118:y:2009:i:2:p:387-397
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(08)00383-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amedeo R. Odoni & Emily Roth, 1983. "An Empirical Investigation of the Transient Behavior of Stationary Queueing Systems," Operations Research, INFORMS, vol. 31(3), pages 432-455, June.
    2. Kingsman, Brian G., 2000. "Modelling input-output workload control for dynamic capacity planning in production planning systems," International Journal of Production Economics, Elsevier, vol. 68(1), pages 73-93, October.
    3. Stefan Voß & David L. Woodruff, 2006. "Introduction to Computational Optimization Models for Production Planning in a Supply Chain," Springer Books, Springer, edition 0, number 978-3-540-29879-3, December.
    4. Stephen C. Graves, 1986. "A Tactical Planning Model for a Job Shop," Operations Research, INFORMS, vol. 34(4), pages 522-533, August.
    5. Stevenson, Mark & Hendry, Linda C., 2006. "Aggregate load-oriented workload control: A review and a re-classification of a key approach," International Journal of Production Economics, Elsevier, vol. 104(2), pages 676-693, December.
    6. Noah Gans & Ger Koole & Avishai Mandelbaum, 2003. "Telephone Call Centers: Tutorial, Review, and Research Prospects," Manufacturing & Service Operations Management, INFORMS, vol. 5(2), pages 79-141, September.
    7. Oosterman, Bas & Land, Martin & Gaalman, Gerard, 2000. "The influence of shop characteristics on workload control," International Journal of Production Economics, Elsevier, vol. 68(1), pages 107-119, October.
    8. Srinivasan, A. & Carey, M. & Morton, T.E., 1988. "Resource Pricing And Aggregate Scheduling In Manufacturing Systems," GSIA Working Papers 88-89-58, Carnegie Mellon University, Tepper School of Business.
    9. Hendry, L. & Land, M. & Stevenson, M. & Gaalman, G., 2008. "Investigating implementation issues for workload control (WLC): A comparative case study analysis," International Journal of Production Economics, Elsevier, vol. 112(1), pages 452-469, March.
    10. Stolletz, Raik, 2008. "Approximation of the non-stationary M(t)/M(t)/c(t)-queue using stationary queueing models: The stationary backlog-carryover approach," European Journal of Operational Research, Elsevier, vol. 190(2), pages 478-493, October.
    11. Zapfel, Gunther & Missbauer, Hubert, 1993. "New concepts for production planning and control," European Journal of Operational Research, Elsevier, vol. 67(3), pages 297-320, June.
    12. Perona, Marco & Portioli, Alberto, 1998. "The impact of parameters setting in load oriented manufacturing control," International Journal of Production Economics, Elsevier, vol. 55(2), pages 133-142, July.
    13. Zapfel, G. & Missbauer, H., 1993. "Production Planning and Control (PPC) systems including load-oriented order release -- Problems and research perspectives," International Journal of Production Economics, Elsevier, vol. 30(1), pages 107-122, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Missbauer, Hubert, 2011. "Order release planning with clearing functions: A queueing-theoretical analysis of the clearing function concept," International Journal of Production Economics, Elsevier, vol. 131(1), pages 399-406, May.
    2. Guhlich, Hendrik & Fleischmann, Moritz & Mönch, Lars & Stolletz, Raik, 2018. "A clearing function based bid-price approach to integrated order acceptance and release decisions," European Journal of Operational Research, Elsevier, vol. 268(1), pages 243-254.
    3. Yarong Chen & Hongming Zhou & Peiyu Huang & FuhDer Chou & Shenquan Huang, 2022. "A refined order release method for achieving robustness of non-repetitive dynamic manufacturing system performance," Annals of Operations Research, Springer, vol. 311(1), pages 65-79, April.
    4. Fernandes, Nuno O. & Carmo-Silva, S., 2011. "Workload control under continuous order release," International Journal of Production Economics, Elsevier, vol. 131(1), pages 257-262, May.
    5. Pürgstaller, Peter & Missbauer, Hubert, 2012. "Rule-based vs. optimisation-based order release in workload control: A simulation study of a MTO manufacturer," International Journal of Production Economics, Elsevier, vol. 140(2), pages 670-680.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julia Pahl & Stefan Voß & David Woodruff, 2007. "Production planning with load dependent lead times: an update of research," Annals of Operations Research, Springer, vol. 153(1), pages 297-345, September.
    2. Missbauer, Hubert, 2011. "Order release planning with clearing functions: A queueing-theoretical analysis of the clearing function concept," International Journal of Production Economics, Elsevier, vol. 131(1), pages 399-406, May.
    3. Stevenson, Mark & Hendry, Linda C., 2006. "Aggregate load-oriented workload control: A review and a re-classification of a key approach," International Journal of Production Economics, Elsevier, vol. 104(2), pages 676-693, December.
    4. Jianjun Liu & Martin J. Land & Jos A. C. Bokhorst & Qingxin Chen, 2023. "Improving coordination in assembly job shops: redesigning order release and dispatching," Flexible Services and Manufacturing Journal, Springer, vol. 35(3), pages 669-697, September.
    5. Onay, Anita & Stampfer, Christina & Missbauer, Hubert, 2023. "A behavioral perspective on workload control concepts: The influence of order release on operators’ reaction behavior," International Journal of Production Economics, Elsevier, vol. 264(C).
    6. Hendry, L. & Land, M. & Stevenson, M. & Gaalman, G., 2008. "Investigating implementation issues for workload control (WLC): A comparative case study analysis," International Journal of Production Economics, Elsevier, vol. 112(1), pages 452-469, March.
    7. Pürgstaller, Peter & Missbauer, Hubert, 2012. "Rule-based vs. optimisation-based order release in workload control: A simulation study of a MTO manufacturer," International Journal of Production Economics, Elsevier, vol. 140(2), pages 670-680.
    8. Stevenson, Mark & Huang, Yuan & Hendry, Linda C. & Soepenberg, Erik, 2011. "The theory and practice of workload control: A research agenda and implementation strategy," International Journal of Production Economics, Elsevier, vol. 131(2), pages 689-700, June.
    9. Land, Martin J., 2009. "Cobacabana (control of balance by card-based navigation): A card-based system for job shop control," International Journal of Production Economics, Elsevier, vol. 117(1), pages 97-103, January.
    10. Henrich, Peter & Land, Martin & Gaalman, Gerard, 2006. "Grouping machines for effective workload control," International Journal of Production Economics, Elsevier, vol. 104(1), pages 125-142, November.
    11. Thürer, Matthias & Stevenson, Mark & Qu, Ting & Godinho Filho, Moacir, 2014. "The design of simple subcontracting rules for make-to-order shops: An assessment by simulation," European Journal of Operational Research, Elsevier, vol. 239(3), pages 854-864.
    12. Matthias Thürer & Mark Stevenson, 2016. "Workload control in job shops with re-entrant flows: an assessment by simulation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(17), pages 5136-5150, September.
    13. Sagawa, Juliana Keiko & Oliveira, Allan Freitas & Mušič, Gašper & Land, Martin J. & Maluf, Arthur Sarro, 2023. "Smart workload input-output control of production systems: A proof of concept," European Journal of Operational Research, Elsevier, vol. 309(1), pages 286-305.
    14. Stefan Haeussler & Philipp Neuner & Matthias Thürer, 2023. "Balancing earliness and tardiness within workload control order release: an assessment by simulation," Flexible Services and Manufacturing Journal, Springer, vol. 35(2), pages 487-508, June.
    15. Haeussler, S. & Stampfer, C. & Missbauer, H., 2020. "Comparison of two optimization based order release models with fixed and variable lead times," International Journal of Production Economics, Elsevier, vol. 227(C).
    16. Fernandes, Nuno O. & Thürer, Matthias & Silva, Cristóvão & Carmo-Silva, Sílvio, 2017. "Improving workload control order release: Incorporating a starvation avoidance trigger into continuous release," International Journal of Production Economics, Elsevier, vol. 194(C), pages 181-189.
    17. Thürer, Matthias & Stevenson, Mark & Land, Martin J., 2016. "On the integration of input and output control: Workload Control order release," International Journal of Production Economics, Elsevier, vol. 174(C), pages 43-53.
    18. Thürer, Matthias & Land, Martin J. & Stevenson, Mark, 2014. "Card-based workload control for job shops: Improving COBACABANA," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 180-188.
    19. Alex Roubos & Ger Koole & Raik Stolletz, 2012. "Service-Level Variability of Inbound Call Centers," Manufacturing & Service Operations Management, INFORMS, vol. 14(3), pages 402-413, July.
    20. Kefeli, Ali & Uzsoy, Reha & Fathi, Yahya & Kay, Michael, 2011. "Using a mathematical programming model to examine the marginal price of capacitated resources," International Journal of Production Economics, Elsevier, vol. 131(1), pages 383-391, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:118:y:2009:i:2:p:387-397. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.