IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v652y2024ics0378437124005703.html
   My bibliography  Save this article

Avalanche dynamics in nonconservative water droplet

Author

Listed:
  • Shi, Kai
  • Mei, Xiaoli
  • Liu, Chunqiong
  • Liu, Mengping
  • Du, Hongfei

Abstract

The self-organized criticality (SOC) exhibits excellent performance in describing the dynamic features of multi-body systems in nature. It is usually considered that conservative law is a necessary condition for the existence of SOC. However, mass or energy dissipation typically exists in the process from self-organization to a critical state in natural systems such as earthquakes and air pollution, namely, non-conservation. At present, few physical experiments have systematically explored the SOC behavior in a non-conservative system, compared to numerical simulations. This study is the first to design a non-conservative sandpile experiment using water droplets. Based on this experiment, the dynamic evolution process of avalanches in a non-conservative system has been analyzed. The results show that the avalanche size of water droplets follows a power-law distribution, as the water mass decays with time. This phenomenon obeys the rules of scale-free distribution, which is consistent with SOC behavior. Moreover, the waiting time of water droplets avalanche follows a stretched exponential distribution. These results suggest that SOC behavior still exists in non-conservative multi-body systems, which is affected by the decay coefficient. We then explore the mechanism by which the decay coefficient affects the transition of the system to a critical state in the non-conservative sandpile model (NBTW). We find that only when the decay coefficient is small do the inequality measures, Gini coefficient g and Kolkata index k, exhibit nearly universal values, similar to the mechanism of the system transitioning to a critical state in the traditional BTW model. When the decay coefficient is large, the NBTW model shows scaling-limited effects and the scaling exponent of avalanche size increases with the decay coefficient. Furthermore, we use the NBTW model to study how the decay coefficient influences the scaling exponent of avalanche size. We find that the NBTW model can effectively explain the variability of scaling exponents observed in different SOC systems and establish a quantitative relationship between the mass decay coefficient and the avalanche size scaling exponent. This study provides new insight into SOC behavior in non-conservative systems in nature.

Suggested Citation

  • Shi, Kai & Mei, Xiaoli & Liu, Chunqiong & Liu, Mengping & Du, Hongfei, 2024. "Avalanche dynamics in nonconservative water droplet," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 652(C).
  • Handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s0378437124005703
    DOI: 10.1016/j.physa.2024.130061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124005703
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.130061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Gui-Qing & Baró, Jordi & Cheng, Fang-Yin & Huang, He & Wang, Lin, 2019. "Avalanche dynamics of a generalized earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1463-1471.
    2. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    3. Manna, S.S. & Biswas, Soumyajyoti & Chakrabarti, Bikas K., 2022. "Near universal values of social inequality indices in self-organized critical models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Bunde, Armin & F. Eichner, Jan & Havlin, Shlomo & W. Kantelhardt, Jan, 2004. "Return intervals of rare events in records with long-term persistence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 308-314.
    5. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing, 2016. "Universal and non-universal properties of recurrence intervals of rare events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 132-143.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi Zhang & Zhengning Pu & Jiasha Fu, 2018. "The Recurrence Interval Difference of Power Load in Heavy/Light Industries of China," Energies, MDPI, vol. 11(1), pages 1-20, January.
    2. Zhi-Qiang Jiang & Askery Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1713-1724, November.
    3. Suo, Yuan-Yuan & Wang, Dong-Hua & Li, Sai-Ping, 2015. "Risk estimation of CSI 300 index spot and futures in China from a new perspective," Economic Modelling, Elsevier, vol. 49(C), pages 344-353.
    4. Tadić, Bosiljka & Mitrović Dankulov, Marija & Melnik, Roderick, 2023. "Evolving cycles and self-organised criticality in social dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    5. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    6. Li, Wei-Zhen & Zhai, Jin-Rui & Jiang, Zhi-Qiang & Wang, Gang-Jin & Zhou, Wei-Xing, 2022. "Predicting tail events in a RIA-EVT-Copula framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    7. Batac, Rene & Longjas, Anthony & Monterola, Christopher, 2012. "Statistical distributions of avalanche size and waiting times in an inter-sandpile cascade model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 616-624.
    8. Zhao, Xiaojun & Zhang, Pengyuan, 2020. "Multiscale horizontal visibility entropy: Measuring the temporal complexity of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    9. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
    10. Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018. "Short term prediction of extreme returns based on the recurrence interval analysis," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
    11. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    12. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
    13. Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
    14. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    15. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
    16. Fei Wang & Wei Chao, 2018. "A New Perspective on Improving Hospital Energy Administration Based on Recurrence Interval Analysis," Energies, MDPI, vol. 11(5), pages 1-18, May.
    17. Biró, Tamás S. & Telcs, András & Józsa, Máté & Néda, Zoltán, 2023. "Gintropic scaling of scientometric indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    18. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    19. Ruz, Soumendra Nath, 2023. "Amazing aspects of inequality indices (Gini and Kolkata Index) of COVID-19 confirmed cases in India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P2).
    20. Chi Zhang & Zhengning Pu & Qin Zhou, 2018. "Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market," Sustainability, MDPI, vol. 10(1), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:652:y:2024:i:c:s0378437124005703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.