IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v537y2020ics0378437119315250.html
   My bibliography  Save this article

Multiscale horizontal visibility entropy: Measuring the temporal complexity of financial time series

Author

Listed:
  • Zhao, Xiaojun
  • Zhang, Pengyuan

Abstract

In this paper, we propose a horizontal visibility entropy (HVE) to measure the temporal complexity of non-stationary financial time series. It is a graphic and information-theoretic approach. By transforming the time series into a horizontal visibility graph (HVG), the dynamics of the underlying systems can be traced out through the topology structure of the graph. Then, we use a multiscale analysis of the Shannon entropy to characterize the complexity of time series under a range of time scales. The new method is free of any pre-requisite of additional parameters on estimating the probability distribution of continuous time series, which, therefore, has the advantages of robustness, high repeatability, and low requirement on the data length. We also compare our new method with the permutation entropy (PE), and apply it to financial time series analysis, which gives some new results.

Suggested Citation

  • Zhao, Xiaojun & Zhang, Pengyuan, 2020. "Multiscale horizontal visibility entropy: Measuring the temporal complexity of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
  • Handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315250
    DOI: 10.1016/j.physa.2019.122674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119315250
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng-Cen Qian & Zhi-Qiang Jiang & Wei-Xing Zhou, 2009. "Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices," Papers 0910.2524, arXiv.org.
    2. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    3. Zhang, Hong & Long, Linan & Dong, Keqiang, 2019. "Detect and evaluate dependencies between aero-engine gas path system variables based on multiscale horizontal visibility graph analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    4. Martín Gómez Ravetti & Laura C Carpi & Bruna Amin Gonçalves & Alejandro C Frery & Osvaldo A Rosso, 2014. "Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph," PLOS ONE, Public Library of Science, vol. 9(9), pages 1-15, September.
    5. Fengzhong Wang & Kazuko Yamasaki & Shlomo Havlin & H. Eugene Stanley, 2005. "Scaling and memory of intraday volatility return intervals in stock market," Papers physics/0511101, arXiv.org.
    6. Qiu, T. & Guo, L. & Chen, G., 2008. "Scaling and memory effect in volatility return interval of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6812-6818.
    7. Gabaix, Xavier & Gopikrishnan, Parameswaran & Plerou, Vasiliki & Stanley, H.Eugene, 2003. "Understanding the cubic and half-cubic laws of financial fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 1-5.
    8. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    9. Xie, Wen-Jie & Zhou, Wei-Xing, 2011. "Horizontal visibility graphs transformed from fractional Brownian motions: Topological properties versus the Hurst index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3592-3601.
    10. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing, 2016. "Universal and non-universal properties of recurrence intervals of rare events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 132-143.
    11. Tian Qiu & Liang Guo & Guang Chen, 2008. "Scaling and Memory Effect in Volatility Return Interval of the Chinese Stock Market," Papers 0805.2194, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lahmiri, Salim & Bekiros, Stelios, 2020. "Renyi entropy and mutual information measurement of market expectations and investor fear during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Chen, Yu & Ling, Guang & Song, Xiangxiang & Tu, Wenhui, 2023. "Characterizing the statistical complexity of nonlinear time series via ordinal pattern transition networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    2. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    3. Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
    4. Zhi-Qiang Jiang & Askery Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1713-1724, November.
    5. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    6. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.
    7. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    8. Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Papers 1106.0039, arXiv.org.
    9. Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
    10. Baldovin, Fulvio & Caporin, Massimiliano & Caraglio, Michele & Stella, Attilio L. & Zamparo, Marco, 2015. "Option pricing with non-Gaussian scaling and infinite-state switching volatility," Journal of Econometrics, Elsevier, vol. 187(2), pages 486-497.
    11. Jiahua Wang & Hongliang Zhu & Dongxin Li, 2018. "Price Dynamics in an Order-Driven Market with Bayesian Learning," Complexity, Hindawi, vol. 2018, pages 1-15, November.
    12. Borland, Lisa, 2016. "Exploring the dynamics of financial markets: from stock prices to strategy returns," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 59-74.
    13. Moretto, Enrico & Pasquali, Sara & Trivellato, Barbara, 2016. "Option pricing under deformed Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 446(C), pages 246-263.
    14. Liu, Hao-Ran & Li, Ming-Xia & Zhou, Wei-Xing, 2024. "Visibility graph analysis of the grains and oilseeds indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
    15. Politi, Mauro & Millot, Nicolas & Chakraborti, Anirban, 2012. "The near-extreme density of intraday log-returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 147-155.
    16. Dai, Peng-Fei & Xiong, Xiong & Zhou, Wei-Xing, 2019. "Visibility graph analysis of economy policy uncertainty indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 531(C).
    17. B. Zhang & J. Wang & W. Zhang & G. C. Wang, 2020. "Nonlinear Scaling Behavior of Visible Volatility Duration for Financial Statistical Physics Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 373-389, August.
    18. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
    19. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
    20. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:537:y:2020:i:c:s0378437119315250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.