IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v36y2014icp8-17.html
   My bibliography  Save this article

Extreme value statistics and recurrence intervals of NYMEX energy futures volatility

Author

Listed:
  • Xie, Wen-Jie
  • Jiang, Zhi-Qiang
  • Zhou, Wei-Xing

Abstract

Energy markets and the associated energy futures markets play a crucial role in global economies. It is of great theoretical and practical significance to gain a deeper understanding of extreme value statistics of the volatility of energy futures traded on the New York Mercantile Exchange (NYMEX). We investigate the statistical properties of the recurrence intervals of daily volatility time series of four NYMEX energy futures, which are defined as the waiting times τ between consecutive volatilities exceeding a given threshold q. We find that the recurrence intervals are distributed as a stretched exponential Pqτ∼eaτ−γ, where the exponent γ decreases with increasing q, and there is no scaling behavior in the distributions for different thresholds q after the recurrence intervals are scaled with the mean recurrence interval τ¯. These findings are significant under the Kolmogorov–Smirnov test and the Cramér–von Mises test. We show that the empirical estimations are in nice agreement with the numerical integration results for the occurrence probability Wq(Δt|t) of a next event above the threshold q within a (short) time interval after an elapsed time t from the last event above q. We also investigate the memory effects of the recurrence intervals. It is found that the conditional distributions of large and small recurrence intervals differ from each other and the conditional mean of the recurrence intervals scale as a power law of the preceding interval τ¯τ0/τ¯∼τ0/τ¯β, indicating that the recurrence intervals have short-term correlations. Detrended fluctuation analysis and detrending moving average analysis further uncover that the recurrence intervals possess long-term correlations. We confirm that the “clustering” of the volatility recurrence intervals is caused by the long-term correlations well known to be present in the volatility. Our findings shed new lights on the behavior of large volatilities and have potential implications in risk management of energy futures.

Suggested Citation

  • Xie, Wen-Jie & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2014. "Extreme value statistics and recurrence intervals of NYMEX energy futures volatility," Economic Modelling, Elsevier, vol. 36(C), pages 8-17.
  • Handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:8-17
    DOI: 10.1016/j.econmod.2013.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999313003714
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2013.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    2. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
    3. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    4. John Elder & Apostolos Serletis, 2008. "Long memory in energy futures prices," Review of Financial Economics, John Wiley & Sons, vol. 17(2), pages 146-155.
    5. Qiu, T. & Guo, L. & Chen, G., 2008. "Scaling and memory effect in volatility return interval of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(27), pages 6812-6818.
    6. Shang, Pengjian & Lin, Aijing & Liu, Liang, 2009. "Chaotic SVD method for minimizing the effect of exponential trends in detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(5), pages 720-726.
    7. Greco, Antonella & Sorriso-Valvo, Luca & Carbone, Vincenzo & Cidone, Stefano, 2008. "Waiting time distributions of the volatility in the Italian MIB30 index: Clustering or Poisson functions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(16), pages 4272-4284.
    8. Matsushita, Raul & Gleria, Iram & Figueiredo, Annibal & Da Silva, Sergio, 2007. "Are Pound and Euro the Same Currency? - Updated," MPRA Paper 1981, University Library of Munich, Germany.
    9. Tian Qiu & Liang Guo & Guang Chen, 2008. "Scaling and Memory Effect in Volatility Return Interval of the Chinese Stock Market," Papers 0805.2194, arXiv.org.
    10. Sadorsky, Perry, 1999. "Oil price shocks and stock market activity," Energy Economics, Elsevier, vol. 21(5), pages 449-469, October.
    11. Bunde, Armin & F. Eichner, Jan & Havlin, Shlomo & W. Kantelhardt, Jan, 2004. "Return intervals of rare events in records with long-term persistence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 308-314.
    12. Jones, Charles M & Kaul, Gautam, 1996. "Oil and the Stock Markets," Journal of Finance, American Finance Association, vol. 51(2), pages 463-491, June.
    13. Kazuko Yamasaki & Lev Muchnik & Shlomo Havlin & Armin Bunde & H. Eugene Stanley, 2006. "Scaling and Memory in Return Loss Intervals: Application to Risk Estimation," Springer Books, in: Hideki Takayasu (ed.), Practical Fruits of Econophysics, pages 43-51, Springer.
    14. Bashan, Amir & Bartsch, Ronny & Kantelhardt, Jan W. & Havlin, Shlomo, 2008. "Comparison of detrending methods for fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5080-5090.
    15. Wei Li & Fengzhong Wang & Shlomo Havlin & H. Eugene Stanley, 2011. "Financial factor influence on scaling and memory of trading volume in stock market," Papers 1106.1415, arXiv.org.
    16. Junhuan Zhang & Jun Wang & Jiguang Shao, 2010. "Finite-Range Contact Process On The Market Return Intervals Distributions," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 13(05), pages 643-657.
    17. Hao Meng & Fei Ren & Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei-Xing Zhou & Wei Zhang, 2012. "Effects of long memory in the order submission process on the properties of recurrence intervals of large price fluctuations," Papers 1201.2825, arXiv.org.
    18. Fei Ren & Wei-Xing Zhou, 2010. "Recurrence interval analysis of trading volumes," Papers 1002.1653, arXiv.org.
    19. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2007. "The Hurst exponent in energy futures prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 325-332.
    20. Bunde, Armin & F. Eichner, Jan & Havlin, Shlomo & Kantelhardt, Jan W., 2003. "The effect of long-term correlations on the return periods of rare events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 1-7.
    21. M. S. Santhanam & Holger Kantz, 2008. "Return interval distribution of extreme events and long term memory," Papers 0803.1706, arXiv.org.
    22. Serletis, Apostolos & Rosenberg, Aryeh Adam, 2009. "Mean reversion in the US stock market," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2007-2015.
    23. Serletis, Demitre, 2008. "Effect of noise on fractal structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 921-924.
    24. Kaizoji, Taisei & Kaizoji, Michiyo, 2004. "Power law for the calm-time interval of price changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 563-570.
    25. W.-S. Jung & F. Z. Wang & S. Havlin & T. Kaizoji & H.-T. Moon & H. E. Stanley, 2008. "Volatility return intervals analysis of the Japanese market," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 62(1), pages 113-119, March.
    26. Carbone, A. & Castelli, G. & Stanley, H.E., 2004. "Time-dependent Hurst exponent in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(1), pages 267-271.
    27. Amir Bashan & Ronny Bartsch & Jan W. Kantelhardt & Shlomo Havlin, 2008. "Comparison of detrending methods for fluctuation analysis," Papers 0804.4081, arXiv.org.
    28. Arianos, Sergio & Carbone, Anna, 2007. "Detrending moving average algorithm: A closed-form approximation of the scaling law," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 9-15.
    29. Fei Ren & Wei-Xing Zhou, 2008. "Multiscaling behavior in the volatility return intervals of Chinese indices," Papers 0809.0250, arXiv.org.
    30. Fengzhong Wang & Kazuko Yamasaki & Shlomo Havlin & H. Eugene Stanley, 2005. "Scaling and memory of intraday volatility return intervals in stock market," Papers physics/0511101, arXiv.org.
    31. Carbone, Anna & Stanley, H.Eugene, 2004. "Directed self-organized critical patterns emerging from fractional Brownian paths," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 544-551.
    32. repec:clg:wpaper:2007-02 is not listed on IDEAS
    33. F. Wang & P. Weber & K. Yamasaki & S. Havlin & H. E. Stanley, 2007. "Statistical regularities in the return intervals of volatility," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 123-133, January.
    34. Tabak, Benjamin M. & Cajueiro, Daniel O., 2007. "Are the crude oil markets becoming weakly efficient over time? A test for time-varying long-range dependence in prices and volatility," Energy Economics, Elsevier, vol. 29(1), pages 28-36, January.
    35. Ying-Hui Shao & Gao Feng Gu & Zhi-Qiang Jiang & Wei-Xing Zhou & Didier Sornette, 2012. "Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series," Papers 1208.4158, arXiv.org.
    36. Xu, Na & Shang, Pengjian & Kamae, Santi, 2009. "Minimizing the effect of exponential trends in detrended fluctuation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 311-316.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi Zhang & Zhengning Pu & Qin Zhou, 2018. "Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    2. Lucheng Hong & Wantao Shu & Angela C. Chao, 2018. "Recurrence Interval Analysis on Electricity Consumption of an Office Building in China," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    3. Wang, Guochao & Zheng, Shenzhou & Wang, Jun, 2020. "Fluctuation and volatility dynamics of stochastic interacting energy futures price model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    4. Li, Wei-Zhen & Zhai, Jin-Rui & Jiang, Zhi-Qiang & Wang, Gang-Jin & Zhou, Wei-Xing, 2022. "Predicting tail events in a RIA-EVT-Copula framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    5. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "The long memory and the transaction cost in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 312-320.
    6. Zhi-Qiang Jiang & Askery Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1713-1724, November.
    7. Chicheportiche, Rémy & Chakraborti, Anirban, 2017. "A model-free characterization of recurrences in stationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 312-318.
    8. Yue-Hua Dai & Wei-Xing Zhou, 2017. "Temporal and spatial correlation patterns of air pollutants in Chinese cities," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-24, August.
    9. Niu, Hongli & Wang, Jun & Lu, Yunfan, 2016. "Fluctuation behaviors of financial return volatility duration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 30-40.
    10. Chi Zhang & Zhengning Pu & Jiasha Fu, 2018. "The Recurrence Interval Difference of Power Load in Heavy/Light Industries of China," Energies, MDPI, vol. 11(1), pages 1-20, January.
    11. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
    12. Li, Daye & Kou, Zhun & Sun, Qiankun, 2015. "The scale-dependent market trend: Empirical evidences using the lagged DFA method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 433(C), pages 26-35.
    13. Zhou, Weijie & Wang, Zhengxin & Guo, Haiming, 2016. "Modelling volatility recurrence intervals in the Chinese commodity futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 514-525.
    14. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    15. Fei Wang & Wei Chao, 2018. "A New Perspective on Improving Hospital Energy Administration Based on Recurrence Interval Analysis," Energies, MDPI, vol. 11(5), pages 1-18, May.
    16. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    17. Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018. "Short term prediction of extreme returns based on the recurrence interval analysis," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
    18. Suo, Yuan-Yuan & Wang, Dong-Hua & Li, Sai-Ping, 2015. "Risk estimation of CSI 300 index spot and futures in China from a new perspective," Economic Modelling, Elsevier, vol. 49(C), pages 344-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhi-Qiang Jiang & Askery Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1713-1724, November.
    2. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    3. Jiang, Zhi-Qiang & Xie, Wen-Jie & Zhou, Wei-Xing, 2014. "Testing the weak-form efficiency of the WTI crude oil futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 235-244.
    4. Suo, Yuan-Yuan & Wang, Dong-Hua & Li, Sai-Ping, 2015. "Risk estimation of CSI 300 index spot and futures in China from a new perspective," Economic Modelling, Elsevier, vol. 49(C), pages 344-353.
    5. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
    6. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    7. Chi Zhang & Zhengning Pu & Qin Zhou, 2018. "Sustainable Energy Consumption in Northeast Asia: A Case from China’s Fuel Oil Futures Market," Sustainability, MDPI, vol. 10(1), pages 1-14, January.
    8. Ouyang, F.Y. & Zheng, B. & Jiang, X.F., 2014. "Spatial and temporal structures of four financial markets in Greater China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 402(C), pages 236-244.
    9. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    10. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
    11. Zhou, Weijie & Wang, Zhengxin & Guo, Haiming, 2016. "Modelling volatility recurrence intervals in the Chinese commodity futures market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 514-525.
    12. F. Y. Ouyang & B. Zheng & X. F. Jiang, 2014. "Spatial and temporal structures of four financial markets in Greater China," Papers 1402.1046, arXiv.org.
    13. Li, Wei-Zhen & Zhai, Jin-Rui & Jiang, Zhi-Qiang & Wang, Gang-Jin & Zhou, Wei-Xing, 2022. "Predicting tail events in a RIA-EVT-Copula framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    14. Zhi-Qiang Jiang & Gang-Jin Wang & Askery Canabarro & Boris Podobnik & Chi Xie & H. Eugene Stanley & Wei-Xing Zhou, 2018. "Short term prediction of extreme returns based on the recurrence interval analysis," Quantitative Finance, Taylor & Francis Journals, vol. 18(3), pages 353-370, March.
    15. Yang, Yan-Hong & Shao, Ying-Hui & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Revisiting the weak-form efficiency of the EUR/CHF exchange rate market: Evidence from episodes of different Swiss franc regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 734-746.
    16. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    17. Zhao, Xiaojun & Shang, Pengjian & Zhao, Chuang & Wang, Jing & Tao, Rui, 2012. "Minimizing the trend effect on detrended cross-correlation analysis with empirical mode decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 166-173.
    18. Stanley, H. Eugene & Plerou, Vasiliki & Gabaix, Xavier, 2008. "A statistical physics view of financial fluctuations: Evidence for scaling and universality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(15), pages 3967-3981.
    19. Gao-Feng Gu & Xiong Xiong & Yong-Jie Zhang & Wei Chen & Wei Zhang & Wei-Xing Zhou, 2014. "Stylized facts of price gaps in limit order books: Evidence from Chinese stocks," Papers 1405.1247, arXiv.org.
    20. Zhao, Xiaojun & Shang, Pengjian & Lin, Aijing & Chen, Gang, 2011. "Multifractal Fourier detrended cross-correlation analysis of traffic signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3670-3678.

    More about this item

    Keywords

    Extreme volatility; Risk estimation; Recurrence interval; Distribution; Memory;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:36:y:2014:i:c:p:8-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.