IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v650y2024ics0378437124004850.html
   My bibliography  Save this article

A dynamic hierarchical cooperative lane change strategy for off-ramp connected and autonomous vehicles in mixed traffic environment

Author

Listed:
  • Shen, Shiquan
  • Liu, Xi
  • Li, Zongdian
  • Zhang, Huawei
  • Ke, Jianxin
  • Chen, Zheng

Abstract

On the expressway, vehicle lane change faces intractable challenges. Improper lane change decisions often lead to serious traffic accidents and unexpected fluctuations of traffic flow. As the connected and automated vehicles (CAVs) emerge on roads, there is an opportunity to avoid poor lane change via communications and cooperations among vehicles. However, the practical traffic environment is mixed, where CAVs and human-driven vehicles (HDVs) coexist. To make full use of cooperative lane change on the expressway, this study exhausts all possible (seven types) vehicle configurations (i.e., CAVs or HDVs) surrounding the connected and automated off-ramp vehicle (CAOV). Then, a dynamic hierarchical cooperative lane change strategy is proposed, which includes: 1) a fuzzy logic-based decision model for lane change in the upper layer; 2) an optimal trajectory planning algorithm with anti-collision safety detection in the lower layer. The proposed strategy helps the CAOV make the best lane change decision among three choices according to the environment and generate an optimal lane change trajectory ensuring driving comforts and efficiency. By numerical analysis and comprehensive simulations, the proposed strategy shows good performance in increasing the lane change success rate (LCSR) and overall traffic speed on the expressway.

Suggested Citation

  • Shen, Shiquan & Liu, Xi & Li, Zongdian & Zhang, Huawei & Ke, Jianxin & Chen, Zheng, 2024. "A dynamic hierarchical cooperative lane change strategy for off-ramp connected and autonomous vehicles in mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 650(C).
  • Handle: RePEc:eee:phsmap:v:650:y:2024:i:c:s0378437124004850
    DOI: 10.1016/j.physa.2024.129976
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124004850
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129976?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kou, Yukang & Ma, Changxi, 2023. "Dual-objective intelligent vehicle lane changing trajectory planning based on polynomial optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 617(C).
    2. Madaan, Nikita & Sharma, Sapna, 2022. "Delayed-feedback control in multi-lane traffic system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    3. Nagatani, Takashi, 2022. "Chain reaction of traffic breakdowns in coupled-cycle networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    4. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    5. Tanimoto, Jun & An, Xie, 2019. "Improvement of traffic flux with introduction of a new lane-change protocol supported by Intelligent Traffic System," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 1-5.
    6. Li, Huamin & Zhang, Shun, 2022. "Lane change behavior with uncertainty and fuzziness for human driving vehicles and its simulation in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Lu & Wong, S.C. & Xu, Pengpeng & Chow, Andy H.F. & Lam, William H.K., 2021. "Calibration of stochastic link-based fundamental diagram with explicit consideration of speed heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 524-539.
    2. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    3. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    4. Xu, Tu & Laval, Jorge, 2020. "Statistical inference for two-regime stochastic car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 210-228.
    5. Simão, Ricardo & Wardil, Lucas, 2021. "Social dilemma in traffic with heterogeneous drivers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    6. He, Jia & He, Zhengbing & Fan, Bo & Chen, Yanyan, 2020. "Optimal location of lane-changing warning point in a two-lane road considering different traffic flows," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    7. Chen, Danjue & Ahn, Soyoung, 2018. "Capacity-drop at extended bottlenecks: Merge, diverge, and weave," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 1-20.
    8. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    9. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    10. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    12. Muskan Verma & Arvind Kumar Gupta & Sapna Sharma, 2024. "Traffic flow dynamics and oscillation control in conserved fractal networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 97(10), pages 1-12, October.
    13. Cassidy, Michael J & Jang, Kitae & Daganzo, Carlos F, 2008. "The Smoothing Effect of Carpool Lanes on Freeway Bottlenecks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6fk4s29c, Institute of Transportation Studies, UC Berkeley.
    14. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    15. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    16. Chen, Danjue & Laval, Jorge & Zheng, Zuduo & Ahn, Soyoung, 2012. "A behavioral car-following model that captures traffic oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 46(6), pages 744-761.
    17. Oh, Simon & Yeo, Hwasoo, 2015. "Impact of stop-and-go waves and lane changes on discharge rate in recovery flow," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 88-102.
    18. Liu, Wei & Yin, Yafeng & Yang, Hai, 2015. "Effectiveness of variable speed limits considering commuters’ long-term response," Transportation Research Part B: Methodological, Elsevier, vol. 81(P2), pages 498-519.
    19. Pengying Ouyang & Bo Yang, 2024. "Evaluation of Spatiotemporal Characteristics of Lane-Changing at the Freeway Weaving Area from Trajectory Data," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    20. Wang, Zhangu & Guan, Changming & Zhao, Ziliang & Zhao, Jun & Qi, Chen & Hui, Zilaing, 2024. "Expressway lane change strategy of autonomous driving based on prior knowledge and data-driven," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:650:y:2024:i:c:s0378437124004850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.