IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v122y2019icp1-5.html
   My bibliography  Save this article

Improvement of traffic flux with introduction of a new lane-change protocol supported by Intelligent Traffic System

Author

Listed:
  • Tanimoto, Jun
  • An, Xie

Abstract

A new Cellular Automata traffic model based on Revised S-NFS model was established, which considers traffic density ahead of a car in next 50 [m] and also accounts for a decision making process of whether a lane change should be tried or not so as to diminish the frequency of meaningless lane-changes. It intends to be applied as one of the protocols to improve traffic efficiency in premise with Intelligence Traffic System (ITS) that is able to provide information on traffic density next hundred meters in front of a focal vehicle. A series of systematic simulations reveals that the presented lane changing protocol enhances traffic flux vis-à-vis the conventional lane change rule based on the traditional incentive criterion and safe criterion. Social dilemma analysis suggests our new protocol mitigates a strong social dilemma encouraged by a competition between a cooperator; not intending any lane-changes and a defector; trying to lane-changes to minimize his own travel time.

Suggested Citation

  • Tanimoto, Jun & An, Xie, 2019. "Improvement of traffic flux with introduction of a new lane-change protocol supported by Intelligent Traffic System," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 1-5.
  • Handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:1-5
    DOI: 10.1016/j.chaos.2019.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077919300670
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2019.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shinji Kukida & Jun Tanimoto & Aya Hagishima, 2011. "Analysis Of The Influence Of Lane Changing On Traffic-Flow Dynamics Based On The Cellular Automaton Model," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 271-281.
    2. Nakata, Makoto & Yamauchi, Atsuo & Tanimoto, Jun & Hagishima, Aya, 2010. "Dilemma game structure hidden in traffic flow at a bottleneck due to a 2 into 1 lane junction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(23), pages 5353-5361.
    3. Tanimoto, Jun & Nakamura, Kousuke, 2016. "Social dilemma structure hidden behind traffic flow with route selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 92-99.
    4. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    5. Kokubo, Satoshi & Tanimoto, Jun & Hagishima, Aya, 2011. "A new Cellular Automata Model including a decelerating damping effect to reproduce Kerner’s three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(4), pages 561-568.
    6. Zhen Wang & Marko Jusup & Lei Shi & Joung-Hun Lee & Yoh Iwasa & Stefano Boccaletti, 2018. "Exploiting a cognitive bias promotes cooperation in social dilemma experiments," Nature Communications, Nature, vol. 9(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    2. Shang, Xue-Cheng & Li, Xin-Gang & Xie, Dong-Fan & Jia, Bin & Jiang, Rui & Liu, Feng, 2022. "A data-driven two-lane traffic flow model based on cellular automata," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    3. Sueyoshi, Fumi & Utsumi, Shinobu & Tanimoto, Jun, 2022. "Underlying social dilemmas in mixed traffic flow with lane changes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    4. Qigang Zhu & Yifan Liu & Ming Liu & Shuaishuai Zhang & Guangyang Chen & Hao Meng, 2021. "Intelligent Planning and Research on Urban Traffic Congestion," Future Internet, MDPI, vol. 13(11), pages 1-17, November.
    5. Dong, Yuming & Jia, Xiaolu & Yanagisawa, Daichi & Nagahama, Akihito & Nishinari, Katsuhiro, 2022. "Optimization of transition behaviors in a two-lane system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P2).
    6. Simão, Ricardo & Wardil, Lucas, 2021. "Social dilemma in traffic with heterogeneous drivers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    7. Simão, Ricardo, 2021. "Evolution of behaviors in heterogeneous traffic models as driven annealed disorders and its relation to the n-vector model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Jie, Yingmo & Liu, Charles Zhechao & Li, Mingchu & Choo, Kim-Kwang Raymond & Chen, Ling & Guo, Cheng, 2020. "Game theoretic resource allocation model for designing effective traffic safety solution against drunk driving," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    9. Peng, Guanghan & Wang, Wanlin & Tan, Huili, 2023. "Chaotic jam and phase transitions in heterogeneous lattice model integrating the delay characteristics difference with passing effect under autonomous and human-driven vehicles environment," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    10. Zhang, Qianran & Ma, Shoufeng & Tian, Junfang & Rose, John M. & Jia, Ning, 2022. "Mode choice between autonomous vehicles and manually-driven vehicles: An experimental study of information and reward," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 24-39.
    11. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanimoto, Jun & Futamata, Masanori & Tanaka, Masaki, 2020. "Automated vehicle control systems need to solve social dilemmas to be disseminated," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Sueyoshi, Fumi & Utsumi, Shinobu & Tanimoto, Jun, 2022. "Underlying social dilemmas in mixed traffic flow with lane changes," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    3. Simão, Ricardo & Wardil, Lucas, 2021. "Social dilemma in traffic with heterogeneous drivers," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    4. Tanimoto, Jun & Nakamura, Kousuke, 2016. "Social dilemma structure hidden behind traffic flow with route selection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 92-99.
    5. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    6. Zhang, Qianran & Ma, Shoufeng & Tian, Junfang & Rose, John M. & Jia, Ning, 2022. "Mode choice between autonomous vehicles and manually-driven vehicles: An experimental study of information and reward," Transportation Research Part A: Policy and Practice, Elsevier, vol. 157(C), pages 24-39.
    7. Simão, Ricardo, 2021. "Evolution of behaviors in heterogeneous traffic models as driven annealed disorders and its relation to the n-vector model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    8. Zhufei Huang & Zihan Zhang & Haijian Li & Lingqiao Qin & Jian Rong, 2019. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    9. Yang, Xuenan & Peng, Yu & Xiao, Yue & Wu, Xue, 2019. "Nonlinear dynamics of a duopoly Stackelberg game with marginal costs," Chaos, Solitons & Fractals, Elsevier, vol. 123(C), pages 185-191.
    10. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    11. Hossain, Md. Anowar & Tanimoto, Jun, 2022. "A microscopic traffic flow model for sharing information from a vehicle to vehicle by considering system time delay effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    12. Liu, Chen & Guo, Hao & Li, Zhibin & Gao, Xiaoyuan & Li, Shudong, 2019. "Coevolution of multi-game resolves social dilemma in network population," Applied Mathematics and Computation, Elsevier, vol. 341(C), pages 402-407.
    13. Wang, Qiuling & Du, Chunpeng, 2019. "Impact of expansion of priority range on cooperation in the prisoner's dilemma game," Chaos, Solitons & Fractals, Elsevier, vol. 129(C), pages 77-80.
    14. Gao, Lei & Li, Yaotang & Wang, Zhen & Wang, Rui-Wu, 2022. "Asymmetric strategy setup solve the Prisoner’s Dilemma of the evolution of mutualism," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    15. Dehghani, Sedigheh & Nazarimehr, Fahimeh & Jafari, Sajad, 2021. "How can cultural conditions affect society’s decisions?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    16. Blanch Micó, Mª Teresa & Lucas Alba, Antonio & Bellés Rivera, Teresa & Ferruz Gracia, Ana Mª & Melchor Galán, Óscar M. & Delgado Pastor, Luis C. & Ruíz Jiménez, Francisco & Chóliz Montañés, Mariano, 2018. "Car following: Comparing distance-oriented vs. inertia-oriented driving techniques," Transport Policy, Elsevier, vol. 67(C), pages 13-22.
    17. Wang, Xianjia & Yang, Zhipeng & Liu, Yanli & Chen, Guici, 2023. "A reinforcement learning-based strategy updating model for the cooperative evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    18. Tian, Junfang & Li, Guangyu & Treiber, Martin & Jiang, Rui & Jia, Ning & Ma, Shoufeng, 2016. "Cellular automaton model simulating spatiotemporal patterns, phase transitions and concave growth pattern of oscillations in traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 560-575.
    19. Li, Huamin & Zhang, Shun, 2022. "Lane change behavior with uncertainty and fuzziness for human driving vehicles and its simulation in mixed traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    20. Saifuzzaman, Mohammad & Zheng, Zuduo & Haque, Md. Mazharul & Washington, Simon, 2017. "Understanding the mechanism of traffic hysteresis and traffic oscillations through the change in task difficulty level," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 523-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:122:y:2019:i:c:p:1-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.