IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt6fk4s29c.html
   My bibliography  Save this paper

The Smoothing Effect of Carpool Lanes on Freeway Bottlenecks

Author

Listed:
  • Cassidy, Michael J
  • Jang, Kitae
  • Daganzo, Carlos F

Abstract

Real data show that reserving a lane for carpools on congested freeways induces a smoothing effect that is characterized by significantly higher bottleneck discharge flows (capacities) in adjacent lanes. The effect arises because disruptive vehicle lane changing diminishes in the presence of a carpool lane. The effect is reproducible across days and freeway sites: it was observed, without exception, in all cases tested. Queueing analysis shows that the effect greatly reduces the times spent by people and vehicles in queues. By ignoring the smoothing effect at one of the sites we analyzed, for example, one would predict that its carpool lane increased both the people-hours and the vehicle-hours traveled by well over 300%; when in reality the carpool lane and its attendant smoothing reduced both measures. The effect is so significant, in fact, that even a severely underused carpool lane can in some instances increase a freeway bottleneck’s total discharge flow. This happens for the site we analyzed when carpool demand is as low as 1200 vph. It follows that strategies designed to induce smoothing by other means also hold promise for managing congestion, both for freeways that have carpool lanes and those that do not. Possible strategies of this kind are discussed.

Suggested Citation

  • Cassidy, Michael J & Jang, Kitae & Daganzo, Carlos F, 2008. "The Smoothing Effect of Carpool Lanes on Freeway Bottlenecks," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6fk4s29c, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt6fk4s29c
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6fk4s29c.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    2. Munoz, Juan Carlos & Daganzo, Carlos F, 2002. "Fingerprinting Traffic From Static Freeway Sensors," University of California Transportation Center, Working Papers qt1mf4n2w8, University of California Transportation Center.
    3. Cassidy, Michael J. & Rudjanakanoknad, Jittichai, 2005. "Increasing the capacity of an isolated merge by metering its on-ramp," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 896-913, December.
    4. Laval, Jorge A. & Daganzo, Carlos F., 2006. "Lane-changing in traffic streams," Transportation Research Part B: Methodological, Elsevier, vol. 40(3), pages 251-264, March.
    5. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    6. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae & Chung, Koohong, 2006. "Empirical Reassessment of Traffic Operations: Freeway Bottlenecks and the Case for HOV Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt31h8z81t, Institute of Transportation Studies, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric J. Gonzales & Nikolas Geroliminis & Michael J. Cassidy & Carlos F. Daganzo, 2010. "On the allocation of city space to multiple transport modes," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(8), pages 643-656, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cassidy, Michael J. & Jang, Kitae & Daganzo, Carlos F., 2010. "The smoothing effect of carpool lanes on freeway bottlenecks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(2), pages 65-75, February.
    2. Li, Xiaopeng & Ouyang, Yanfeng, 2011. "Characterization of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1346-1361.
    3. Laval, Jorge A. & Leclercq, Ludovic, 2008. "Microscopic modeling of the relaxation phenomenon using a macroscopic lane-changing model," Transportation Research Part B: Methodological, Elsevier, vol. 42(6), pages 511-522, July.
    4. Delpiano, Rafael & Laval, Jorge & Coeymans, Juan Enrique & Herrera, Juan Carlos, 2015. "The kinematic wave model with finite decelerations: A social force car-following model approximation," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 182-193.
    5. Jin, Wen-Long, 2013. "A multi-commodity Lighthill–Whitham–Richards model of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 361-377.
    6. Kim, Kwangho & Cassidy, Michael J., 2012. "A capacity-increasing mechanism in freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 46(9), pages 1260-1272.
    7. Jin, Wen-Long & Gan, Qi-Jian & Lebacque, Jean-Patrick, 2015. "A kinematic wave theory of capacity drop," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 316-329.
    8. Jang, Kitae & Cassidy, Michael J., 2012. "Dual influences on vehicle speed in special-use lanes and critique of US regulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(7), pages 1108-1123.
    9. Cassidy, Michael J. & Daganzo, Carlos F. & Jang, Kitae, 2008. "Spatiotemporal Effects of Segregating Different Vehicle Classes on Separate Lanes," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6c69j2vv, Institute of Transportation Studies, UC Berkeley.
    10. Tang, Tie-Qiao & Zhang, Jian & Chen, Liang & Shang, Hua-Yan, 2017. "Analysis of vehicle’s safety envelope under car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 127-133.
    11. Jin, Wen-Long, 2010. "A kinematic wave theory of lane-changing traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1001-1021, September.
    12. Lee, Joon & Cassidy, Michael J, 2008. "An Empirical and Theoretical Study of Freeway Weave Bottlenecks," University of California Transportation Center, Working Papers qt2970816w, University of California Transportation Center.
    13. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    14. B. G. Heydecker & J. D. Addison, 2005. "Analysis of Dynamic Traffic Equilibrium with Departure Time Choice," Transportation Science, INFORMS, vol. 39(1), pages 39-57, February.
    15. Jang, Kitae & Chung, Koohong & Yeo, Hwasoo, 2014. "A dynamic pricing strategy for high occupancy toll lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 69-80.
    16. Seo, Toru & Kawasaki, Yutaka & Kusakabe, Takahiko & Asakura, Yasuo, 2019. "Fundamental diagram estimation by using trajectories of probe vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 40-56.
    17. Li, Xiaopeng & Wang, Xin & Ouyang, Yanfeng, 2012. "Prediction and field validation of traffic oscillation propagation under nonlinear car-following laws," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 409-423.
    18. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    19. Daganzo, Carlos F., 2011. "On the macroscopic stability of freeway traffic," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 782-788, June.
    20. Wang, Hongping & Fang, Yi-Ping & Zio, Enrico, 2022. "Resilience-oriented optimal post-disruption reconfiguration for coupled traffic-power systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6fk4s29c. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.