IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v646y2024ics0378437124004151.html
   My bibliography  Save this article

A graphical criterion for the controllability in temporal networks

Author

Listed:
  • Tu, Jin-cheng
  • Lu, Hou-qing
  • Lu, Tian-ming
  • Xie, Zong-qiao
  • Lu, Lei
  • Wei, Lingxiang

Abstract

Link temporality is a fundamental characteristic of diverse real networks across various domains, posing challenges in comprehending and controlling complex systems. The ultimate goal of understanding complex systems is to effectively manipulate them from their initial state to a desired state. Previous studies have predominantly focused on static networks due to computational complexity in analyzing temporal networks. In this study, we aim to enhance our understanding of link temporality and propose a graphical criterion for evaluating the dimension of controllable space in temporal systems by utilizing maximum matching in their aggregated static counterparts. This criterion overcomes the computation constraints associated with controlling large networks. We validated our graphical criterion in multiple temporal networks including model and real temporal networks, and observed that temporal networks with more degree-homogeneous snapshots are easier to be controlled. Moreover, we revealed that temporal process can disrupt the linear dependence of signals and found that the pivotal role of leaf links in expanding the dimension of controllable space in temporal networks.

Suggested Citation

  • Tu, Jin-cheng & Lu, Hou-qing & Lu, Tian-ming & Xie, Zong-qiao & Lu, Lei & Wei, Lingxiang, 2024. "A graphical criterion for the controllability in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
  • Handle: RePEc:eee:phsmap:v:646:y:2024:i:c:s0378437124004151
    DOI: 10.1016/j.physa.2024.129906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124004151
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Xiaoyao & Liang, Yongqing & Wang, Xiaomeng & Jia, Tao, 2021. "The network asymmetry caused by the degree correlation and its effect on the bimodality in control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    2. Ingo Scholtes & Nicolas Wider & René Pfitzner & Antonios Garas & Claudio J. Tessone & Frank Schweitzer, 2014. "Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    3. Gang Yan & Petra E. Vértes & Emma K. Towlson & Yee Lian Chew & Denise S. Walker & William R. Schafer & Albert-László Barabási, 2017. "Network control principles predict neuron function in the Caenorhabditis elegans connectome," Nature, Nature, vol. 550(7677), pages 519-523, October.
    4. Shi Gu & Fabio Pasqualetti & Matthew Cieslak & Qawi K. Telesford & Alfred B. Yu & Ari E. Kahn & John D. Medaglia & Jean M. Vettel & Michael B. Miller & Scott T. Grafton & Danielle S. Bassett, 2015. "Controllability of structural brain networks," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    5. Francesco Lo Iudice & Franco Garofalo & Francesco Sorrentino, 2015. "Structural permeability of complex networks to control signals," Nature Communications, Nature, vol. 6(1), pages 1-6, December.
    6. Sean P. Cornelius & William L. Kath & Adilson E. Motter, 2013. "Realistic control of network dynamics," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    7. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    8. Liu, Xinzhi & Teo, Kok-Lay & Zhang, Hongtao & Chen, Guanrong, 2006. "Switching control of linear systems for generating chaos," Chaos, Solitons & Fractals, Elsevier, vol. 30(3), pages 725-733.
    9. Jianxi Gao & Yang-Yu Liu & Raissa M. D'Souza & Albert-László Barabási, 2014. "Target control of complex networks," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    2. Liu, Jie & Schonfeld, Paul M. & Shuai, Chunyan & He, Mingwei & Wang, Kelvin C.P., 2022. "The controllability of China’s high-speed rail network in terms of delivering emergency supplies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    3. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    4. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    5. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Huili Sun & Rongtao Jiang & Wei Dai & Alexander J. Dufford & Stephanie Noble & Marisa N. Spann & Shi Gu & Dustin Scheinost, 2023. "Network controllability of structural connectomes in the neonatal brain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    7. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    8. Liu, Suling & Xu, Qiong & Chen, Aimin & Wang, Pei, 2020. "Structural controllability of dynamic transcriptional regulatory networks for Saccharomyces cerevisiae," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    9. Guilherme Ramos & Sérgio Pequito, 2020. "Generating complex networks with time-to-control communities," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-12, August.
    10. Pang, Shao-Peng & Hao, Fei, 2018. "Target control of edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 14-26.
    11. Dingjie Wang & Suoqin Jin & Fang-Xiang Wu & Xiufen Zou, 2015. "Estimation Of Control Energy And Control Strategies For Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-23, November.
    12. Dingjie Wang & Xiufen Zou, 2017. "Control Energy And Controllability Of Multilayer Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-25, June.
    13. Gaopeng Duan & Aming Li & Tao Meng & Long Wang, 2020. "Energy Cost For Target Control Of Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-27, March.
    14. Li, Xiang & Li, Guoqi & Gao, Leitao & Li, Beibei & Xiao, Gaoxi, 2024. "Sufficient control of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    15. Lu Zhong & Mamadou Diagne & Qi Wang & Jianxi Gao, 2022. "Vaccination and three non-pharmaceutical interventions determine the dynamics of COVID-19 in the US," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-12, December.
    16. Richard F Betzel & Katherine C Wood & Christopher Angeloni & Maria Neimark Geffen & Danielle S Bassett, 2019. "Stability of spontaneous, correlated activity in mouse auditory cortex," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.
    17. Sun, Peng Gang & Ma, Xiaoke & Chi, Juan, 2017. "Dominating complex networks by identifying minimum skeletons," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 182-191.
    18. Luboš Brim & Samuel Pastva & David Šafránek & Eva Šmijáková, 2021. "Parallel One-Step Control of Parametrised Boolean Networks," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
    19. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Yu, Xiaoyao & Liang, Yongqing & Wang, Xiaomeng & Jia, Tao, 2021. "The network asymmetry caused by the degree correlation and its effect on the bimodality in control," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:646:y:2024:i:c:s0378437124004151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.