IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v18y2015i07n08ns0219525915500186.html
   My bibliography  Save this article

Estimation Of Control Energy And Control Strategies For Complex Networks

Author

Listed:
  • DINGJIE WANG

    (School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, P. R. China)

  • SUOQIN JIN

    (School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, P. R. China)

  • FANG-XIANG WU

    (Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, S7N 5A9, Canada)

  • XIUFEN ZOU

    (School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, P. R. China)

Abstract

The controlling of complex networks is one of the most challenging problems in modern network science. Accordingly, the required energy cost of control is a fundamental and significant problem. In this paper, we present the theoretical analysis and numerical simulations to study the controllability of complex networks from the energy perspective. First, by combining theoretical derivation and numerical simulations, we obtain lower bounds of the maximal and minimal energy costs for an arbitrary normal network, which are related to the eigenvalues of the state transition matrix. Second, we deduce that controlling unstable normal networks is easier than controlling stable normal networks with the same size. Third, we demonstrate a tradeoff between the control energy and the average degree (or the maximum degree) of an arbitrary undirected network. Fourth, numerical simulations show that the energy cost is negatively correlated with the degree of nodes. Moreover, the combinations of control nodes with the greater sum of degree need less energy to implement complete control. Finally, we propose a multi-objective optimization model to obtain the control strategy, which not only ensures the fewer control nodes but also guarantees the less energy cost of control.

Suggested Citation

  • Dingjie Wang & Suoqin Jin & Fang-Xiang Wu & Xiufen Zou, 2015. "Estimation Of Control Energy And Control Strategies For Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-23, November.
  • Handle: RePEc:wsi:acsxxx:v:18:y:2015:i:07n08:n:s0219525915500186
    DOI: 10.1142/S0219525915500186
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525915500186
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525915500186?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sean P. Cornelius & William L. Kath & Adilson E. Motter, 2013. "Realistic control of network dynamics," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    2. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    3. Zhengzhong Yuan & Chen Zhao & Zengru Di & Wen-Xu Wang & Ying-Cheng Lai, 2013. "Exact controllability of complex networks," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Babak Ravandi & Forough S. Ansari & Fatma Mili, 2020. "Controllability Analysis Of Complex Networks Using Statistical Random Sampling," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, January.
    2. Dingjie Wang & Xiufen Zou, 2017. "Control Energy And Controllability Of Multilayer Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dingjie Wang & Xiufen Zou, 2017. "Control Energy And Controllability Of Multilayer Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-25, June.
    2. Sun, Peng Gang & Ma, Xiaoke & Chi, Juan, 2017. "Dominating complex networks by identifying minimum skeletons," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 182-191.
    3. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    4. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    5. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    6. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    7. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    9. Ding, Jie & Wen, Changyun & Li, Guoqi, 2017. "Key node selection in minimum-cost control of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 251-261.
    10. Li, Meizhu & Zhang, Qi & Deng, Yong, 2018. "Evidential identification of influential nodes in network of networks," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 283-296.
    11. Li, Xin-Feng & Lu, Zhe-Ming, 2016. "Optimizing the controllability of arbitrary networks with genetic algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 422-433.
    12. Liu, Suling & Xu, Qiong & Chen, Aimin & Wang, Pei, 2020. "Structural controllability of dynamic transcriptional regulatory networks for Saccharomyces cerevisiae," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    13. Nie, Sen & Wang, Xuwen & Wang, Binghong, 2015. "Effect of degree correlation on exact controllability of multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 98-102.
    14. Pang, Shaopeng & Hao, Fei, 2017. "Optimizing controllability of edge dynamics in complex networks by perturbing network structure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 217-227.
    15. Gaopeng Duan & Aming Li & Tao Meng & Long Wang, 2020. "Energy Cost For Target Control Of Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-27, March.
    16. Hu, Ying & Yu, Yang & Mardani, Abbas, 2021. "Selection of carbon emissions control industries in China: An approach based on complex networks control perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    17. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Berryhill, Benjamin & Yazdani, Alireza, 2016. "Characterizing the topological and controllability features of U.S. power transmission networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 84-98.
    18. Wei, Liang & Li, Faxu & Zhao, Haixing & Deng, Bo, 2024. "On the minimum driver node set of k-uniform linear hypertree networks," Applied Mathematics and Computation, Elsevier, vol. 474(C).
    19. Yang, Qing-Lin & Wang, Li-Fu & Zhao, Guo-Tao & Guo, Ge, 2020. "A coarse graining algorithm based on m-order degree in complex network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
    20. Rinaldi, Marco, 2018. "Controllability of transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 381-406.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:18:y:2015:i:07n08:n:s0219525915500186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.