IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i5p560-d511691.html
   My bibliography  Save this article

Parallel One-Step Control of Parametrised Boolean Networks

Author

Listed:
  • Luboš Brim

    (Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic)

  • Samuel Pastva

    (Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic)

  • David Šafránek

    (Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic)

  • Eva Šmijáková

    (Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic)

Abstract

Boolean network (BN) is a simple model widely used to study complex dynamic behaviour of biological systems. Nonetheless, it might be difficult to gather enough data to precisely capture the behavior of a biological system into a set of Boolean functions. These issues can be dealt with to some extent using parametrised Boolean networks (ParBNs), as this model allows leaving some update functions unspecified. In our work, we attack the control problem for ParBNs with asynchronous semantics. While there is an extensive work on controlling BNs without parameters, the problem of control for ParBNs has not been in fact addressed yet. The goal of control is to ensure the stabilisation of a system in a given state using as few interventions as possible. There are many ways to control BN dynamics. Here, we consider the one-step approach in which the system is instantaneously perturbed out of its actual state. A naïve approach to handle control of ParBNs is using parameter scan and solve the control problem for each parameter valuation separately using known techniques for non-parametrised BNs. This approach is however highly inefficient as the parameter space of ParBNs grows doubly exponentially in the worst case. We propose a novel semi-symbolic algorithm for the one-step control problem of ParBNs, that builds on symbolic data structures to avoid scanning individual parameters. We evaluate the performance of our approach on real biological models.

Suggested Citation

  • Luboš Brim & Samuel Pastva & David Šafránek & Eva Šmijáková, 2021. "Parallel One-Step Control of Parametrised Boolean Networks," Mathematics, MDPI, vol. 9(5), pages 1-16, March.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:560-:d:511691
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/5/560/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/5/560/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sean P. Cornelius & William L. Kath & Adilson E. Motter, 2013. "Realistic control of network dynamics," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    2. Desheng Zheng & Guowu Yang & Xiaoyu Li & Zhicai Wang & Feng Liu & Lei He, 2013. "An Efficient Algorithm for Computing Attractors of Synchronous And Asynchronous Boolean Networks," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-7, April.
    3. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    4. Mohammad Moradi & Sama Goliaei & Mohammad-Hadi Foroughmand-Araabi, 2019. "A Boolean network control algorithm guided by forward dynamic programming," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    2. Sun, Peng Gang & Ma, Xiaoke & Chi, Juan, 2017. "Dominating complex networks by identifying minimum skeletons," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 182-191.
    3. Dingjie Wang & Suoqin Jin & Fang-Xiang Wu & Xiufen Zou, 2015. "Estimation Of Control Energy And Control Strategies For Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-23, November.
    4. Dingjie Wang & Xiufen Zou, 2017. "Control Energy And Controllability Of Multilayer Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-25, June.
    5. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    6. Yan Zhang & Frank Schweitzer, 2021. "Quantifying the importance of firms by means of reputation and network control," Papers 2101.05010, arXiv.org.
    7. Tu, Jin-cheng & Lu, Hou-qing & Lu, Tian-ming & Xie, Zong-qiao & Lu, Lei & Wei, Lingxiang, 2024. "A graphical criterion for the controllability in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    8. Gaopeng Duan & Aming Li & Tao Meng & Long Wang, 2020. "Energy Cost For Target Control Of Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-27, March.
    9. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    10. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    11. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    12. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    13. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    14. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    15. Bo Zhang & Jianping Yuan & J. F. Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Global Feedback Control for Coordinated Linear Switched Reluctance Machines Network with Full-State Observation and Internal Model Compensation," Energies, MDPI, vol. 10(12), pages 1-19, December.
    16. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    17. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    18. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    19. Yang, Xu-Hua & Lou, Shun-Li & Chen, Guang & Chen, Sheng-Yong & Huang, Wei, 2013. "Scale-free networks via attaching to random neighbors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3531-3536.
    20. Zhang, Rui & Wang, Xiaomeng & Cheng, Ming & Jia, Tao, 2019. "The evolution of network controllability in growing networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 257-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:5:p:560-:d:511691. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.