IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0236753.html
   My bibliography  Save this article

Generating complex networks with time-to-control communities

Author

Listed:
  • Guilherme Ramos
  • Sérgio Pequito

Abstract

Dynamical networks are pervasive in a multitude of natural and human-made systems. Often, we seek to guarantee that their state is steered to the desired goal within a specified number of time steps. Different network topologies lead to implicit trade-offs between the minimum number of driven nodes and the time-to-control. In this study, we propose a generative model to create artificial dynamical networks with trade-offs similar to those of real networks. Remarkably, we show that several centrality and non-centrality measures are not necessary nor sufficient to explain the trade-offs, and as a consequence, commonly used generative models do not suffice to capture the dynamical properties under study. Therefore, we introduce the notion of time-to-control communities, that combine networks’ partitions and degree distributions, which is crucial for the proposed generative model. We believe that the proposed methodology is crucial when invoking generative models to investigate dynamical network properties across science and engineering applications. Lastly, we provide evidence that the proposed generative model can generate a variety of networks with statistically indiscernible trade-offs (i.e., the minimum number of driven nodes vs. the time-to-control) from those steaming from real networks (e.g., neural and social networks).

Suggested Citation

  • Guilherme Ramos & Sérgio Pequito, 2020. "Generating complex networks with time-to-control communities," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-12, August.
  • Handle: RePEc:plo:pone00:0236753
    DOI: 10.1371/journal.pone.0236753
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236753
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0236753&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0236753?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Noah J Cowan & Erick J Chastain & Daril A Vilhena & James S Freudenberg & Carl T Bergstrom, 2012. "Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-5, June.
    2. Shi Gu & Fabio Pasqualetti & Matthew Cieslak & Qawi K. Telesford & Alfred B. Yu & Ari E. Kahn & John D. Medaglia & Jean M. Vettel & Michael B. Miller & Scott T. Grafton & Danielle S. Bassett, 2015. "Controllability of structural brain networks," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    3. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    4. Shiquan Ren & Hong Lai & Wenjing Tong & Mostafa Aminzadeh & Xuezhang Hou & Shenghan Lai, 2010. "Nonparametric bootstrapping for hierarchical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1487-1498.
    5. Marcus Kaiser & Claus C Hilgetag, 2006. "Nonoptimal Component Placement, but Short Processing Paths, due to Long-Distance Projections in Neural Systems," PLOS Computational Biology, Public Library of Science, vol. 2(7), pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    2. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Berryhill, Benjamin & Yazdani, Alireza, 2016. "Characterizing the topological and controllability features of U.S. power transmission networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 84-98.
    3. Huili Sun & Rongtao Jiang & Wei Dai & Alexander J. Dufford & Stephanie Noble & Marisa N. Spann & Shi Gu & Dustin Scheinost, 2023. "Network controllability of structural connectomes in the neonatal brain," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Nie, Sen & Wang, Xuwen & Wang, Binghong, 2015. "Effect of degree correlation on exact controllability of multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 98-102.
    5. Wang, Jiqiang, 2019. "Disturbance attenuation of complex dynamical systems through interaction topology design," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 576-584.
    6. Ding, Jin & Lu, Yong-Zai & Chu, Jian, 2013. "Studies on controllability of directed networks with extremal optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6603-6615.
    7. Han, Fangyuan & Zio, Enrico, 2019. "A multi-perspective framework of analysis of critical infrastructures with respect to supply service, controllability and topology," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 1-13.
    8. Yin, Hongli & Zhang, Siying, 2016. "Minimum structural controllability problems of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 467-476.
    9. Tu, Jin-cheng & Lu, Hou-qing & Lu, Tian-ming & Xie, Zong-qiao & Lu, Lei & Wei, Lingxiang, 2024. "A graphical criterion for the controllability in temporal networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
    10. Wei, Bo & Liu, Jie & Wei, Daijun & Gao, Cai & Deng, Yong, 2015. "Weighted k-shell decomposition for complex networks based on potential edge weights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 277-283.
    11. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    12. Andreas Koulouris & Ioannis Katerelos & Theodore Tsekeris, 2013. "Multi-Equilibria Regulation Agent-Based Model of Opinion Dynamics in Social Networks," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 11(1), pages 51-70.
    13. He, He & Yang, Bo & Hu, Xiaoming, 2016. "Exploring community structure in networks by consensus dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 342-353.
    14. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    15. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    16. Bo Zhang & Jianping Yuan & J. F. Pan & Xiaoyu Wu & Jianjun Luo & Li Qiu, 2017. "Global Feedback Control for Coordinated Linear Switched Reluctance Machines Network with Full-State Observation and Internal Model Compensation," Energies, MDPI, vol. 10(12), pages 1-19, December.
    17. Maria Isabel García-Planas & Maria Victoria García-Camba, 2022. "Controllability of Brain Neural Networks in Learning Disorders—A Geometric Approach," Mathematics, MDPI, vol. 10(3), pages 1-13, January.
    18. Meng, Tao & Duan, Gaopeng & Li, Aming & Wang, Long, 2023. "Control energy scaling for target control of complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    19. Yan Zhang & Antonios Garas & Frank Schweitzer, 2019. "Control Contribution Identifies Top Driver Nodes In Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-15, December.
    20. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0236753. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.