IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v20y2017i04n05ns0219525917500084.html
   My bibliography  Save this article

Control Energy And Controllability Of Multilayer Networks

Author

Listed:
  • DINGJIE WANG

    (School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China2Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, P. R. China)

  • XIUFEN ZOU

    (School of Mathematics and Statistics, Wuhan University, Wuhan 430072, P. R. China2Computational Science Hubei Key Laboratory, Wuhan University, Wuhan 430072, P. R. China)

Abstract

The controllability of multilayer networks has become increasingly important in many areas of science and engineering. In this paper, we identify the general rules that determine the controllability and control energy cost of multilayer networks. First, we quantitatively estimate the control energy cost of multilayer networks and investigate the impacts of different coupling strength and coupling patterns on the control energy cost for multilayer networks. The results indicate that the average energy and the coupling strength have an approximately linear relationship in multilayer networks with two layers. Second, we study how the coupling strength and the connection patterns between different layers affect the controllability of multilayer networks from both theoretical and numerical aspects. The obtained piecewise functional relations between the controllability’s measure and coupling strength reveal the existence of an optimal coupling strength for the different interconnection strategies in multilayer networks. In particular, the numerical experiments demonstrate that there exists a tradeoff between the optimal controllability and optimal control energy for selecting interlayer connection patterns in multilayer networks. These results provide a comprehensive understanding of the impact of interlayer couplings on the controllability and control energy cost for multilayer networks and provide a methodology for selecting the control nodes and coupling strength to maximize the controllability and minimize the control energy cost.

Suggested Citation

  • Dingjie Wang & Xiufen Zou, 2017. "Control Energy And Controllability Of Multilayer Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 20(04n05), pages 1-25, June.
  • Handle: RePEc:wsi:acsxxx:v:20:y:2017:i:04n05:n:s0219525917500084
    DOI: 10.1142/S0219525917500084
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525917500084
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525917500084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    2. Sean P. Cornelius & William L. Kath & Adilson E. Motter, 2013. "Realistic control of network dynamics," Nature Communications, Nature, vol. 4(1), pages 1-9, October.
    3. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    4. Zhengzhong Yuan & Chen Zhao & Zengru Di & Wen-Xu Wang & Ying-Cheng Lai, 2013. "Exact controllability of complex networks," Nature Communications, Nature, vol. 4(1), pages 1-9, December.
    5. Dingjie Wang & Suoqin Jin & Fang-Xiang Wu & Xiufen Zou, 2015. "Estimation Of Control Energy And Control Strategies For Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-23, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    2. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    3. Nie, Sen & Wang, Xuwen & Wang, Binghong, 2015. "Effect of degree correlation on exact controllability of multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 98-102.
    4. Sun, Peng Gang & Ma, Xiaoke & Chi, Juan, 2017. "Dominating complex networks by identifying minimum skeletons," Chaos, Solitons & Fractals, Elsevier, vol. 104(C), pages 182-191.
    5. Guo, Tianjiao & Tu, Lilan & Guo, Yifei & Hu, Jia & Su, Qingqing, 2023. "Control-capacity analysis and optimized construction for controlled interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    6. Dingjie Wang & Suoqin Jin & Fang-Xiang Wu & Xiufen Zou, 2015. "Estimation Of Control Energy And Control Strategies For Complex Networks," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 18(07n08), pages 1-23, November.
    7. Chen, Lei & Yue, Dong & Dou, Chunxia, 2019. "Optimization on vulnerability analysis and redundancy protection in interdependent networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1216-1226.
    8. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    9. Tao Jia & Robert F Spivey & Boleslaw Szymanski & Gyorgy Korniss, 2015. "An Analysis of the Matching Hypothesis in Networks," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-12, June.
    10. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    11. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    12. Xian Xi & Xiangyun Gao & Xiaotian Sun & Huiling Zheng & Congcong Wu, 2024. "Dynamic analysis and application of network structure control in risk conduction in the industrial chain," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    13. Hu, Ying & Yu, Yang & Mardani, Abbas, 2021. "Selection of carbon emissions control industries in China: An approach based on complex networks control perspective," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    14. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    15. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    16. Li, Sheng & Liu, Wenwen & Wu, Ruizi & Li, Junli, 2023. "An adaptive attack model to network controllability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    18. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    19. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
    20. Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Berryhill, Benjamin & Yazdani, Alireza, 2016. "Characterizing the topological and controllability features of U.S. power transmission networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 84-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:20:y:2017:i:04n05:n:s0219525917500084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.