COVID-19 created chaos across the globe: Three novel quarantine epidemic models
Author
Abstract
Suggested Citation
DOI: 10.1016/j.chaos.2020.109928
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Raymond Gani & Steve Leach, 2001. "Transmission potential of smallpox in contemporary populations," Nature, Nature, vol. 414(6865), pages 748-751, December.
- Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Utsumi, Shinobu & Arefin, Md. Rajib & Tatsukawa, Yuichi & Tanimoto, Jun, 2022. "How and to what extent does the anti-social behavior of violating self-quarantine measures increase the spread of disease?," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
- Huang, He & Chen, Yahong & Yan, Zhijun, 2021. "Impacts of social distancing on the spread of infectious diseases with asymptomatic infection: A mathematical model," Applied Mathematics and Computation, Elsevier, vol. 398(C).
- Giovanni Dieguez & Cristiane Batistela & José R. C. Piqueira, 2023. "Controlling COVID-19 Spreading: A Three-Level Algorithm," Mathematics, MDPI, vol. 11(17), pages 1-39, September.
- Bimal Kumar Mishra, 2022. "Stochastic models on the transmission of novel COVID-19," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 599-603, April.
- Çaparoğlu, Ömer Faruk & Ok, Yeşim & Tutam, Mahmut, 2021. "To restrict or not to restrict? Use of artificial neural network to evaluate the effectiveness of mitigation policies: A case study of Turkey," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
- Batistela, Cristiane M. & Correa, Diego P.F. & Bueno, Átila M & Piqueira, José Roberto C., 2021. "SIRSi compartmental model for COVID-19 pandemic with immunity loss," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Mishra, Bimal Kumar & Keshri, Ajit Kumar & Saini, Dinesh Kumar & Ayesha, Syeda & Mishra, Binay Kumar & Rao, Yerra Shankar, 2021. "Mathematical model, forecast and analysis on the spread of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
- Wang, Renfei & Li, Yilin & Wu, Dayu & Zou, Yong & Tang, Ming & Guan, Shuguang & Liu, Ying & Jin, Zhen & Pelinovsky, Efim & Kirillin, Mikhail & Macau, Elbert, 2024. "Impact of agent-based intervention strategies on the COVID-19 pandemic in large-scale dynamic contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 646(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Marcin Budzynski & Aneta Luczkiewicz & Jacek Szmaglinski, 2021. "Assessing the Risk in Urban Public Transport for Epidemiologic Factors," Energies, MDPI, vol. 14(15), pages 1-34, July.
- Wen-Dou Zhang & Zheng-Hu Zu & Qing Xu & Zhi-Jing Xu & Jin-Jie Liu & Tao Zheng, 2014. "Optimized Strategy for the Control and Prevention of Newly Emerging Influenza Revealed by the Spread Dynamics Model," PLOS ONE, Public Library of Science, vol. 9(1), pages 1-11, January.
- Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
- Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
- Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
- Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
- Antonio Diez de los Rios, 2022.
"A macroeconomic model of an epidemic with silent transmission and endogenous self‐isolation,"
Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 581-625, February.
- Antonio Diez de los Rios, 2020. "A Macroeconomic Model of an Epidemic with Silent Transmission and Endogenous Self-isolation," Staff Working Papers 20-50, Bank of Canada.
- Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
- Elisa Giannone & Nuno Paixao & Xinle Pang, 2021. "The Geography of Pandemic Containment," Staff Working Papers 21-26, Bank of Canada.
- Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
- Andrew G. Atkeson & Karen A. Kopecky & Tao Zha, 2024.
"Four Stylized Facts About Covid‐19,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(1), pages 3-42, February.
- Andrew Atkeson & Karen A. Kopecky & Tao Zha, 2020. "Four Stylized Facts about COVID-19," FRB Atlanta Working Paper 2020-15, Federal Reserve Bank of Atlanta.
- Andrew Atkeson & Karen Kopecky & Tao Zha, 2020. "Four Stylized Facts about COVID-19," NBER Working Papers 27719, National Bureau of Economic Research, Inc.
- Andrew Atkeson & Karen A. Kopecky & Tao Zha, 2020. "Four Stylized Facts about COVID-19," Staff Report 611, Federal Reserve Bank of Minneapolis.
- Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.
- James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
- Eva K. Lee & Chien-Hung Chen & Ferdinand Pietz & Bernard Benecke, 2009. "Modeling and Optimizing the Public-Health Infrastructure for Emergency Response," Interfaces, INFORMS, vol. 39(5), pages 476-490, October.
- Victor W. Chu & Raymond K. Wong & Chi-Hung Chi & Wei Zhou & Ivan Ho, 2017. "The design of a cloud-based tracker platform based on system-of-systems service architecture," Information Systems Frontiers, Springer, vol. 19(6), pages 1283-1299, December.
- Yonatan Dinku & Boyd Hunter & Francis Markham, 2020. "How might COVID-19 affect the Indigenous labour market?," Australian Journal of Labour Economics (AJLE), Bankwest Curtin Economics Centre (BCEC), Curtin Business School, vol. 23(2), pages 189-209.
- Xu, Jiwei & Li, Jincheng & Han, Zhen & Zhu, Peican, 2024. "Coupled epidemic dynamics with awareness heterogeneity in multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 187(C).
- Khan, Hasib & Ibrahim, Muhammad & Abdel-Aty, Abdel-Haleem & Khashan, M. Motawi & Khan, Farhat Ali & Khan, Aziz, 2021. "A fractional order Covid-19 epidemic model with Mittag-Leffler kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
- Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
More about this item
Keywords
Mathematical models; Pandemic disease; COVID-19; Reproduction number; Home isolation; Quarantine;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920303271. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.