IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v110y2018icp244-251.html
   My bibliography  Save this article

Hybrid consensus for averager–copier–voter networks with non-rational agents

Author

Listed:
  • Shang, Yilun

Abstract

For many social dynamical systems with heterogenous communicating components there exist non-rational agents, whose full profile (such as location and number) is not accessible to the normal agents a priori, posing threats to the group goal of the community. Here we demonstrate how to provide resilience against such non-cooperative behaviors in opinion dynamics. We focus in particular on the consensus of a hybrid network consisting of continuous-valued averager, copier agents and discrete-valued voter agents, where the averagers average the opinions of their neighbors and their own deterministically, while copiers and voters update their opinions following some stochastic strategies. Based upon a filtering strategy which removes some fixed number of opinion values, we establish varied necessary and sufficient conditions for the hybrid opinion network to reach consensus in mean in the presence of globally and locally bounded non-rational agents. The communication topologies are modeled as directed fixed as well as time-dependent robust networks. Although our results are shown to be irrespective of the proportion of the averager, copier, and voters, we find that the existence of voters has distinct influence on the evolution and consensus value of the negotiation process.

Suggested Citation

  • Shang, Yilun, 2018. "Hybrid consensus for averager–copier–voter networks with non-rational agents," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 244-251.
  • Handle: RePEc:eee:chsofr:v:110:y:2018:i:c:p:244-251
    DOI: 10.1016/j.chaos.2018.03.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077918301383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2018.03.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gandica, Yérali & del Castillo-Mussot, Marcelo & Vázquez, Gerardo J. & Rojas, Sergio, 2010. "Continuous opinion model in small-world directed networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(24), pages 5864-5870.
    2. L. Jiang & D. Hua & J. Zhu & B. Wang & T. Zhou, 2008. "Opinion dynamics on directed small-world networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 65(2), pages 251-255, September.
    3. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    4. Rainer Hegselmann & Ulrich Krause, 2002. "Opinion Dynamics and Bounded Confidence Models, Analysis and Simulation," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 5(3), pages 1-2.
    5. Guillaume Deffuant & David Neau & Frederic Amblard & Gérard Weisbuch, 2000. "Mixing beliefs among interacting agents," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 3(01n04), pages 87-98.
    6. Jin, Cheng & Li, Yifu & Jin, Xiaogang, 2017. "Political opinion formation: Initial opinion distribution and individual heterogeneity of tolerance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 257-266.
    7. Dan Braha & Marcus A M de Aguiar, 2017. "Voting contagion: Modeling and analysis of a century of U.S. presidential elections," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-30, May.
    8. Alatas, Husin & Nurhimawan, Salamet & Asmat, Fikri & Hardhienata, Hendradi, 2017. "Dynamics of an agent-based opinion model with complete social connectivity network," Chaos, Solitons & Fractals, Elsevier, vol. 101(C), pages 24-32.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Yue & Li, Linjiao & Yu, Qiannan & Gan, Jiaxin & Zhang, Yi, 2023. "Strategies for reducing polarization in social networks," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    2. Huang, Changwei & Dai, Qionglin & Han, Wenchen & Feng, Yuee & Cheng, Hongyan & Li, Haihong, 2018. "Effects of heterogeneous convergence rate on consensus in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 428-435.
    3. Han, Wenchen & Feng, Yuee & Qian, Xiaolan & Yang, Qihui & Huang, Changwei, 2020. "Clusters and the entropy in opinion dynamics on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    4. Ding, Haixin & Xie, Li, 2024. "The applicability of positive information in negative opinion management: An attitude-laden communication perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    5. Lu, Xi & Mo, Hongming & Deng, Yong, 2015. "An evidential opinion dynamics model based on heterogeneous social influential power," Chaos, Solitons & Fractals, Elsevier, vol. 73(C), pages 98-107.
    6. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    7. Karataieva, Tatiana & Koshmanenko, Volodymyr & Krawczyk, Małgorzata J. & Kułakowski, Krzysztof, 2019. "Mean field model of a game for power," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 535-547.
    8. Ghezelbash, Ehsan & Yazdanpanah, Mohammad Javad & Asadpour, Masoud, 2019. "Polarization in cooperative networks through optimal placement of informed agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    9. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    10. Benjamin Cabrera & Björn Ross & Daniel Röchert & Felix Brünker & Stefan Stieglitz, 2021. "The influence of community structure on opinion expression: an agent-based model," Journal of Business Economics, Springer, vol. 91(9), pages 1331-1355, November.
    11. Calvelli, Matheus & Crokidakis, Nuno & Penna, Thadeu J.P., 2019. "Phase transitions and universality in the Sznajd model with anticonformity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 518-523.
    12. Jalili, Mahdi, 2013. "Social power and opinion formation in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 959-966.
    13. Han, Wenchen & Gao, Shun & Huang, Changwei & Yang, Junzhong, 2022. "Non-consensus states in circular opinion model with repulsive interaction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 585(C).
    14. Zhu, Jiefan & Yao, Yiping & Tang, Wenjie & Zhang, Haoming, 2022. "An agent-based model of opinion dynamics with attitude-hiding behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    15. Ni, Xuelian & Xiong, Fei & Pan, Shirui & Chen, Hongshu & Wu, Jia & Wang, Liang, 2023. "How heterogeneous social influence acts on human decision-making in online social networks," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    16. Huang, Changwei & Bian, Huanyu & Han, Wenchen, 2024. "Breaking the symmetry neutralizes the extremization under the repulsion and higher order interactions," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    17. Catherine A. Glass & David H. Glass, 2021. "Social Influence of Competing Groups and Leaders in Opinion Dynamics," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 799-823, October.
    18. Pérez-Llanos, Mayte & Pinasco, Juan Pablo & Saintier, Nicolas, 2020. "Opinion attractiveness and its effect in opinion formation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    19. Maciel, Marcelo V. & Martins, André C.R., 2020. "Ideologically motivated biases in a multiple issues opinion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    20. Trond G. Husby & Elco E. Koks, 2017. "Household migration in disaster impact analysis: incorporating behavioural responses to risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 287-305, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:110:y:2018:i:c:p:244-251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.