IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v644y2024ics037843712400342x.html
   My bibliography  Save this article

Load cascades in spatial networks: A sandpile model approach

Author

Listed:
  • Wu, Tingwei
  • Xia, Yongxiang
  • Liang, Yuanyuan

Abstract

In the real world, the construction of infrastructure networks is influenced by spatial factors. For such complex networks, We refer to them as spatial networks. This study investigates, based on the Bak–Tang–Wiesenfeld sandpile model, the impact of spatial factors on sandpile cascading avalanches. Through simulations, we discover that spatial factors not only facilitate the occurrence of moderate-scale avalanches in the system but also have a suppressing effect on the occurrence of the largest cascading avalanches. Using a multiplicative branching process, we analyze the influence of triangular structures composed of nodes on sandpile avalanches and find that nodes within triangular structures are relatively resistant to topples. Because of the relatively stable nature within triangular structures, more load tends to stay within this kind of structures. Once a cascading avalanche occurs in the system, the avalanche scale is often larger than that in the non-spatial counterpart. This increase in avalanche scale results in more load being released by the system, making the spatial networks more relaxed. And their probability of very-large-scale cascading avalanches is lower than that of non-spatial networks.

Suggested Citation

  • Wu, Tingwei & Xia, Yongxiang & Liang, Yuanyuan, 2024. "Load cascades in spatial networks: A sandpile model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).
  • Handle: RePEc:eee:phsmap:v:644:y:2024:i:c:s037843712400342x
    DOI: 10.1016/j.physa.2024.129833
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843712400342X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129833?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Arcangelis, L & Herrmann, H.J, 2002. "Self-organized criticality on small world networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 308(1), pages 545-549.
    2. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining & Xu, Bei, 2022. "Modeling and evaluation method for resilience analysis of multi-state networks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Du, Wen-Bo & Zhou, Xing-Lian & Lordan, Oriol & Wang, Zhen & Zhao, Chen & Zhu, Yan-Bo, 2016. "Analysis of the Chinese Airline Network as multi-layer networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 108-116.
    4. Qian, Jiang-Hai & Liao, Qi-Jia & Xu, Jing & Chang, Han-Yun & Han, Ding-Ding & Ma, Yu-Gang, 2023. "Multiple scaling law in networks with dynamic spatial constraint," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhang, Yun-An & Fang, Yining, 2024. "A Multistate Network Approach for Resilience Analysis of UAV Swarm considering Information Exchange Capacity," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Du, Wen-Bo & Zhou, Xing-Lian & Chen, Zhen & Cai, Kai-Quan & Cao, Xian-Bin, 2014. "Traffic dynamics on coupled spatial networks," Chaos, Solitons & Fractals, Elsevier, vol. 68(C), pages 72-77.
    7. Frasca, Mattia & Gambuzza, Lucia Valentina, 2021. "Control of cascading failures in dynamical models of power grids," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    8. Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
    9. Liang, Yuanyuan & Xia, Yongxiang & Yang, Xu-Hua, 2022. "Hybrid-radius spatial network model and its robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    10. Hong, Chen & Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo, 2016. "Structural properties of the Chinese air transportation multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 28-34.
    11. Lee, D.-S. & Goh, K.-I. & Kahng, B. & Kim, D., 2004. "Sandpile avalanche dynamics on scale-free networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 338(1), pages 84-91.
    12. Guillier, S. & Muñoz, V. & Rogan, J. & Zarama, R. & Valdivia, J.A., 2017. "Optimization of spatial complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 465-473.
    13. Olmi, Simona & Gambuzza, Lucia Valentina & Frasca, Mattia, 2024. "Multilayer control of synchronization and cascading failures in power grids," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    14. Lee, Ya-Ting & Chen, Chien-chih & Lin, Chai-Yu & Chi, Sung-Ching, 2012. "Negative correlation between power-law scaling and Hurst exponents in long-range connective sandpile models and real seismicity," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 125-130.
    15. Yi Shen & Gang Ren & Bin Ran, 2021. "Cascading failure analysis and robustness optimization of metro networks based on coupled map lattices: a case study of Nanjing, China," Transportation, Springer, vol. 48(2), pages 537-553, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lahtinen, Jani & Kertész, János & Kaski, Kimmo, 2005. "Sandpiles on Watts–Strogatz type small-worlds," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 535-547.
    2. Hu, Yue & Dai, Liang & Fuellhart, Kurt & Witlox, Frank, 2024. "Examining competition among airline regarding route portfolios at domestic hubs under government regulation: The case of China's aviation market," Journal of Air Transport Management, Elsevier, vol. 116(C).
    3. Lu, Qing-Long & Sun, Wenzhe & Dai, Jiannan & Schmöcker, Jan-Dirk & Antoniou, Constantinos, 2024. "Traffic resilience quantification based on macroscopic fundamental diagrams and analysis using topological attributes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Xu, Xiu-Zhen & Zhou, Run-Hui & Wu, Guo-Lin & Niu, Yi-Feng, 2024. "Evaluating the transmission distance-constrained reliability for a multi-state flow network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Zhang, Mingyuan & Liang, Boyuan & Wang, Sheng & Perc, Matjaž & Du, Wenbo & Cao, Xianbin, 2018. "Analysis of flight conflicts in the Chinese air route network," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 97-102.
    6. Shen, Yi & Yang, Huang & Xie, Yuangcheng & Liu, Yang & Ren, Gang, 2023. "Adaptive robustness optimization against network cascading congestion induced by fluctuant load via a bilateral-adaptive strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    8. Zhang, Chi & Liu, Tao & Bai, Guanghan & Tao, Junyong & Zhu, Wenjin, 2024. "A dynamic resilience evaluation method for cross-domain swarms in confrontation," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    9. Wang, Yiqiao & Lu, Qiaoyi & Cao, Xianbin & Zhou, Xuesong & Latora, Vito & Tong, Lu Carol & Du, Wenbo, 2020. "Travel time analysis in the Chinese coupled aviation and high-speed rail network," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    10. Song, Xueying & Qi, Lei & Liu, Shiyan & Ding, Shuiting & Li, Daqing, 2024. "Simple analysis of complex system safety based on Finite State Machine Network and phase space theory," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    11. Rui Ding & Jian Yin & Peng Dai & Lu Jiao & Rong Li & Tongfei Li & Jianjun Wu, 2019. "Optimal Topology of Multilayer Urban Traffic Networks," Complexity, Hindawi, vol. 2019, pages 1-19, October.
    12. Liang, Yuanyuan & Xia, Yongxiang & Yang, Xu-Hua, 2022. "Hybrid-radius spatial network model and its robustness analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    13. Duan, Dongli & Yan, Qi & Rong, Yisheng & Hou, Gege, 2022. "Predicting the cascading failure of dynamical networks based on a new dimension reduction method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Nicky Zachariou & Paul Expert & Misako Takayasu & Kim Christensen, 2015. "Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-13, November.
    15. Xu, Xiaohan & Huang, Ailing & Shalaby, Amer & Feng, Qian & Chen, Mingyang & Qi, Geqi, 2024. "Exploring cascading failure processes of interdependent multi-modal public transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    16. Thi-Phuong Nguyen, 2021. "Assess the Impacts of Discount Policies on the Reliability of a Stochastic Air Transport Network," Mathematics, MDPI, vol. 9(9), pages 1-13, April.
    17. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    18. Ren, Pan & Li, Lishuai, 2018. "Characterizing air traffic networks via large-scale aircraft tracking data: A comparison between China and the US networks," Journal of Air Transport Management, Elsevier, vol. 67(C), pages 181-196.
    19. Du, Wen-Bo & Zhang, Ming-Yuan & Zhang, Yu & Cao, Xian-Bin & Zhang, Jun, 2018. "Delay causality network in air transport systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 466-476.
    20. Dong, Zhengcheng & Tian, Meng & Liang, Jiaqi & Fang, Yanjun & Lu, Yuxin, 2019. "Research on the connection radius of dependency links in interdependent spatial networks against cascading failures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 555-564.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:644:y:2024:i:c:s037843712400342x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.