IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v86y2016icp28-34.html
   My bibliography  Save this article

Structural properties of the Chinese air transportation multilayer network

Author

Listed:
  • Hong, Chen
  • Zhang, Jun
  • Cao, Xian-Bin
  • Du, Wen-Bo

Abstract

Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.

Suggested Citation

  • Hong, Chen & Zhang, Jun & Cao, Xian-Bin & Du, Wen-Bo, 2016. "Structural properties of the Chinese air transportation multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 86(C), pages 28-34.
  • Handle: RePEc:eee:chsofr:v:86:y:2016:i:c:p:28-34
    DOI: 10.1016/j.chaos.2016.01.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077916300182
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2016.01.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Yong & Xu Kaijun & Xiang Honghui, 2019. "Analysis on Chinese Airline Network Invulnerability," Journal of Systems Science and Information, De Gruyter, vol. 7(4), pages 359-372, August.
    2. Zhang, Haoyu & Wu, Weiwei & Jiang, Yu & Chen, Xinyuan, 2024. "Flight delay propagation in the multiplex network system of airline networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 648(C).
    3. Qian Liu & Wenchen Han & Lixing Lei & Qionglin Dai & Junzhong Yang, 2019. "Chaos Synchronization in Time-Dependent Duplex Networks," Complexity, Hindawi, vol. 2019, pages 1-8, April.
    4. Wen, Tao & Jiang, Wen, 2019. "Identifying influential nodes based on fuzzy local dimension in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 332-342.
    5. Wang, Wei & Cai, Kaiquan & Du, Wenbo & Wu, Xin & Tong, Lu (Carol) & Zhu, Xi & Cao, Xianbin, 2020. "Analysis of the Chinese railway system as a complex network," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    6. Wang, Yiqiao & Lu, Qiaoyi & Cao, Xianbin & Zhou, Xuesong & Latora, Vito & Tong, Lu Carol & Du, Wenbo, 2020. "Travel time analysis in the Chinese coupled aviation and high-speed rail network," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    7. Hu, Yue & Dai, Liang & Fuellhart, Kurt & Witlox, Frank, 2024. "Examining competition among airline regarding route portfolios at domestic hubs under government regulation: The case of China's aviation market," Journal of Air Transport Management, Elsevier, vol. 116(C).
    8. Zhang, Mingyuan & Liang, Boyuan & Wang, Sheng & Perc, Matjaž & Du, Wenbo & Cao, Xianbin, 2018. "Analysis of flight conflicts in the Chinese air route network," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 97-102.
    9. Zhang, Ronda J. & Ye, Fred Y., 2020. "Measuring similarity for clarifying layer difference in multiplex ad hoc duplex information networks," Journal of Informetrics, Elsevier, vol. 14(1).
    10. Xu, Xiaohan & Huang, Ailing & Shalaby, Amer & Feng, Qian & Chen, Mingyang & Qi, Geqi, 2024. "Exploring cascading failure processes of interdependent multi-modal public transit networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    11. Wu, Tingwei & Xia, Yongxiang & Liang, Yuanyuan, 2024. "Load cascades in spatial networks: A sandpile model approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 644(C).
    12. Wang, Xinglong & Peng, Jinhan & Tang, Junqing & Lu, Qiuchen & Li, Xiaowei, 2022. "Investigating the impact of adding new airline routes on air transportation resilience in China," Transport Policy, Elsevier, vol. 125(C), pages 79-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:86:y:2016:i:c:p:28-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.