IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v642y2024ics0378437124003017.html
   My bibliography  Save this article

Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather

Author

Listed:
  • Fu, Chuanyun
  • Lu, Zhaoyou
  • Ding, Naikan
  • Bai, Wei

Abstract

The advent of emerging mixed traffic flow composed of human-driven vehicles (HDVs) and connected and automated vehicles (CAVs) is poised to revolutionize traffic operation mechanisms. To fill the gaps in dynamic threshold of surrogate safety measures (SSMs) and snow weather safety evaluation in emerging mixed traffic flow, this study develops a novel dynamic threshold of distance headway, safety warning distance (SWD), and tests it using a proposed snow weather traffic flow simulation analysis framework. The SWD extends the distance headway to a type of SSM that can simultaneously identify longitudinal and lateral conflicts. In addition, to overcome the problem of lateral conflict identification caused by the deficiency of simulation software, a method for estimating the lane-changing angle is proposed. The results indicate that: (i) CAVs have the potential to significantly enhance the safety of mixed traffic flow, particularly under snowy weather conditions; (ii) there are disparities in the identification of longitudinal conflicts between the commonly used time-to-collision (TTC) and distance headway, which is likely due to discrepancies in the speed and space distributions between the leading and following vehicles under different weather conditions; (iii) differences exist in the identification of lateral conflicts between the conventional post-encroachment time (PET) and distance headway, which is probably attributed to variations in their respective conflict identification patterns; and (iv) Compared to TTC and PET, distance headway with SWD performs better in effectively identifying conflicts within mixed traffic flow under snowy weather conditions. The findings can offer a theoretical foundation for identifying longitudinal and lateral conflicts in emerging mixed traffic flow and quantifying crash risks under both favorable and adverse weather conditions.

Suggested Citation

  • Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
  • Handle: RePEc:eee:phsmap:v:642:y:2024:i:c:s0378437124003017
    DOI: 10.1016/j.physa.2024.129792
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124003017
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129792?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, Yangsheng & Tan, Li & Xiao, Guosheng & Wu, Yunxia & Yao, Zhihong, 2024. "Platoon-aware cooperative lane-changing strategy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    2. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    3. He, Yongming & Feng, Jia & Wei, Kun & Cao, Jian & Chen, Shisheng & Wan, Yanan, 2023. "Modeling and simulation of lane-changing and collision avoiding autonomous vehicles on superhighways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    4. Guo, Jing & Ma, Changxi & Xu, Xuecai & Zhao, Yongpeng & Lu, Xijin, 2022. "Investigation on variable speed limit control strategy of expressway under adverse weather conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 602(C).
    5. Black, Alan W. & Mote, Thomas L., 2015. "Effects of winter precipitation on automobile collisions, injuries, and fatalities in the United States," Journal of Transport Geography, Elsevier, vol. 48(C), pages 165-175.
    6. Jin, Sheng & Wang, Dianhai & Tao, Pengfei & Li, Pingfan, 2010. "Non-lane-based full velocity difference car following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4654-4662.
    7. Sullivan, James L. & Dowds, Jonathan & Novak, David C. & Scott, Darren M. & Ragsdale, Cliff, 2019. "Development and application of an iterative heuristic for roadway snow and ice control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 18-31.
    8. Dai, Yulu & Yang, Yuwei & Wang, Zhiyuan & Luo, YinJie, 2022. "Exploring the impact of damping on Connected and Autonomous Vehicle platoon safety with CACC," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Daniel Burow & Christopher Atkinson, 2019. "An examination of traffic volume during snow events in northeast Ohio," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1179-1189, November.
    10. Guangyang Hou, 2023. "Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    11. Zheng, Liang & Yang, Youpeng & Xue, Xinfeng & Li, Xiaoru & Xu, Chengcheng, 2021. "Towards network-wide safe and efficient traffic signal timing optimization based on costly stochastic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    12. Zheng, Zuduo, 2014. "Recent developments and research needs in modeling lane changing," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 16-32.
    13. Li, Linheng & Gan, Jing & Zhou, Kun & Qu, Xu & Ran, Bin, 2020. "A novel lane-changing model of connected and automated vehicles: Using the safety potential field theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Baojie & Li, Wei & Wen, Haosong & Hu, Xiaojian, 2021. "Modeling impacts of driving automation system on mixed traffic flow at off-ramp freeway facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    2. Li, Linheng & An, Bocheng & Wang, Zhiyu & Gan, Jing & Qu, Xu & Ran, Bin, 2024. "Stability analysis and numerical simulation of a car-following model considering safety potential field and V2X communication: A focus on influence weight of multiple vehicles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 640(C).
    3. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    4. Guo, Yingshi & Zhang, Hongjia & Wang, Chang & Sun, Qinyu & Li, Wanmin, 2021. "Driver lane change intention recognition in the connected environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    5. Yin, Jiacheng & Li, Zongping & Cao, Peng & Li, Linheng & Ju, Yanni, 2023. "Car-following modeling based on Morse model with consideration of road slope in connected vehicles environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    6. Zhao, Jing & Knoop, Victor L. & Wang, Meng, 2020. "Two-dimensional vehicular movement modelling at intersections based on optimal control," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 1-22.
    7. Zhufei Huang & Zihan Zhang & Haijian Li & Lingqiao Qin & Jian Rong, 2019. "Determining Appropriate Lane-Changing Spacing for Off-Ramp Areas of Urban Expressways," Sustainability, MDPI, vol. 11(7), pages 1-15, April.
    8. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    9. Zhang, Zhentao & Li, Xueyun & Su, Chuqi & Liu, Xun & Xiong, Xin & Xiao, Tianqi & Wang, Yiping, 2023. "Potential field-based cooperative adaptive cruising control for longitudinal following and lane changing of vehicle platooning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    10. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    11. Wang, Lichao & Yang, Min & Li, Ye & Hou, Yiqi, 2022. "A model of lane-changing intention induced by deceleration frequency in an automatic driving environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    12. Wenjin Sun & Yongjun Min, 2023. "Research on a Driving Assistance System for Lane Changes on Foggy Highways," Sustainability, MDPI, vol. 15(13), pages 1-20, June.
    13. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    14. He, Yongming & Feng, Jia & Wei, Kun & Cao, Jian & Chen, Shisheng & Wan, Yanan, 2023. "Modeling and simulation of lane-changing and collision avoiding autonomous vehicles on superhighways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    15. Liu, Huaqing & Jiang, Rui, 2021. "Improving comfort level in traffic flow of CACC vehicles at lane drop on two-lane highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    16. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    17. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    18. Zhou, Hao & Toth, Christopher & Guensler, Randall & Laval, Jorge, 2022. "Hybrid modeling of lane changes near freeway diverges," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 1-14.
    19. Wang, Jufeng & Sun, Fengxin & Ge, Hongxia, 2018. "Effect of the driver’s desire for smooth driving on the car-following model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 96-108.
    20. Guo, Yinjia & Chen, Yanyan & Gu, Xin & Guo, Jifu & Zheng, Shuyan & Zhou, Yuntong, 2024. "Dynamic traffic graph based risk assessment of multivehicle lane change interaction scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:642:y:2024:i:c:s0378437124003017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.