IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i19p8323-d1485046.html
   My bibliography  Save this article

Autonomous Vehicles and Urban Traffic Management for Sustainability: Impacts of Transition of Control and Dedicated Lanes

Author

Listed:
  • Zeynel Baran Yıldırım

    (The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, İzmir 35390, Türkiye)

  • Mustafa Özuysal

    (Department of Civil Engineering, Dokuz Eylul University, İzmir 35390, Türkiye)

Abstract

Autonomous vehicles (AVs) are increasingly recognized for their potential to enhance urban traffic systems, particularly in traffic management and sustainability. This study explores AV integration into urban networks, focusing on transitions of control (ToC) and dedicated lane (DL) applications at varying AV penetration rates. Through simulations, various scenarios reveal the complex interactions between AVs and human-driven vehicles in mixed traffic conditions. The findings show that DLs can reduce local density, occupancy, and time loss by 5–35%, while improving travel time reliability by 15–25%. On an urban scale, DLs generally enhance traffic flow and reduce emissions, though the effects of ToC vary based on traffic conditions and AV automation levels. At lower AV penetration rates, ToC can lead to increased travel times and up to a 10% decline in traffic performance due to unpredictable human driver behavior during control transitions. The results highlight that DLs can significantly improve traffic flow, travel time reliability, and emissions, thereby contributing to sustainable urban mobility. However, the impacts of ToC are more complex, depending on specific traffic conditions and AV automation levels. This study emphasizes the importance of well-designed ToC and DL applications to optimize AV integration and support a balanced, sustainable future for urban mobility.

Suggested Citation

  • Zeynel Baran Yıldırım & Mustafa Özuysal, 2024. "Autonomous Vehicles and Urban Traffic Management for Sustainability: Impacts of Transition of Control and Dedicated Lanes," Sustainability, MDPI, vol. 16(19), pages 1-19, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8323-:d:1485046
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/19/8323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/19/8323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Impact of dedicated lanes for connected and autonomous vehicle on traffic flow throughput," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 588-597.
    2. Georges M. Arnaout & Jean-Paul Arnaout, 2014. "Exploring the effects of cooperative adaptive cruise control on highway traffic flow using microscopic traffic simulation," Transportation Planning and Technology, Taylor & Francis Journals, vol. 37(2), pages 186-199, March.
    3. Ye, Lanhang & Yamamoto, Toshiyuki, 2018. "Modeling connected and autonomous vehicles in heterogeneous traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 269-277.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zong, Fang & Wang, Meng & Tang, Jinjun & Zeng, Meng, 2022. "Modeling AVs & RVs’ car-following behavior by considering impacts of multiple surrounding vehicles and driving characteristics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 589(C).
    2. Yao, Zhihong & Li, Le & Liao, Wenbin & Wang, Yi & Wu, Yunxia, 2024. "Optimal lane management policy for connected automated vehicles in mixed traffic flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    3. Zhaoming Zhou & Jianbo Yuan & Shengmin Zhou & Qiong Long & Jianrong Cai & Lei Zhang, 2023. "Modeling and Analysis of Driving Behaviour for Heterogeneous Traffic Flow Considering Market Penetration under Capacity Constraints," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    4. Guangyang Hou, 2023. "Evaluating Efficiency and Safety of Mixed Traffic with Connected and Autonomous Vehicles in Adverse Weather," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    5. Shi, Xiaowei & Li, Xiaopeng, 2021. "Constructing a fundamental diagram for traffic flow with automated vehicles: Methodology and demonstration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 279-292.
    6. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    7. Hongxin Yu & Lihui Zhang & Meng Zhang & Fengyue Jin & Yibing Wang, 2024. "Coordinated Ramp Metering Considering the Dynamics of Mixed-Autonomy Traffic," Sustainability, MDPI, vol. 16(22), pages 1-26, November.
    8. Jonghan Park & Seunghwa Jang & Joonho Ko, 2023. "Effects of Exclusive Lanes for Autonomous Vehicles on Urban Expressways under Mixed Traffic of Autonomous and Human-Driven Vehicles," Sustainability, MDPI, vol. 16(1), pages 1-14, December.
    9. Peng, Jiali & Shangguan, Wei & Peng, Cong & Chai, Linguo, 2024. "Uncertainty modeling of connected and automated vehicle penetration rate under mixed traffic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 639(C).
    10. Pernestål Brenden , Anna & Kristoffersson , Ida, 2018. "Effects of driverless vehicles: A review of simulations," Working papers in Transport Economics 2018:11, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    11. Nanyondo, Josephine & Kasumba, Henry, 2024. "Analysis of heterogeneous vehicular traffic: Using proportional densities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    12. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "Integrated deployment of dedicated lane and roadside unit considering uncertain road capacity under the mixed-autonomy traffic environment," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    13. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    14. Liu, Huaqing & Jiang, Rui, 2021. "Improving comfort level in traffic flow of CACC vehicles at lane drop on two-lane highways," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
    15. Yao, Zhihong & Xu, Taorang & Jiang, Yangsheng & Hu, Rong, 2021. "Linear stability analysis of heterogeneous traffic flow considering degradations of connected automated vehicles and reaction time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    16. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    17. Di, Yunran & Zhang, Weihua & Ding, Heng & Zheng, Xiaoyan & Ran, Bin, 2024. "Cooperative control of dynamic CAV dedicated lanes and vehicle active lane changing in expressway bottleneck areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    18. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    19. Manivasakan, Hesavar & Kalra, Riddhi & O'Hern, Steve & Fang, Yihai & Xi, Yinfei & Zheng, Nan, 2021. "Infrastructure requirement for autonomous vehicle integration for future urban and suburban roads – Current practice and a case study of Melbourne, Australia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 36-53.
    20. Mori, Kentaro & Miwa, Tomio & Abe, Ryosuke & Morikawa, Takayuki, 2022. "Equilibrium analysis of trip demand for autonomous taxi services in Nagoya, Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 166(C), pages 476-498.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:19:p:8323-:d:1485046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.