IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v571y2021ics0378437121001230.html
   My bibliography  Save this article

Towards network-wide safe and efficient traffic signal timing optimization based on costly stochastic simulation

Author

Listed:
  • Zheng, Liang
  • Yang, Youpeng
  • Xue, Xinfeng
  • Li, Xiaoru
  • Xu, Chengcheng

Abstract

This study proposes a stochastic simulation-based network-wide signal timing optimization model with the balance consideration of traffic safety and efficiency, and solves it with a Bi-objective Stochastic Simulation-based Optimization (BOSSO) algorithm. During numerical experiments, an urban road network with 15 signalized and 5 non-signalized intersections in Changsha, China is modelled as an experimental scenario. The calibrated simulator VISSIM, Surrogate Safety Assessment Model (SSAM) and MATLAB are integrated to construct the VISSIM-SSAM-Matlab platform, based on which the network-wide signal timing optimization problems without and with coordination are solved by the BOSSO algorithm to trade-off traffic conflicts and total delay. Numerical results show that only hundreds of simulations are cost to obtain the ultimate non-dominated non-coordinated and coordinated signal timing plans, and validate a competing relationship between traffic conflicts and total delay. By the bi-objective comparison of three various signal plans from the overall and local aspects, the coordinated signal plan outperforms the non-coordinated one, which is followed by the field implemented one. It successfully demonstrates the effectiveness of the BOSSO method.

Suggested Citation

  • Zheng, Liang & Yang, Youpeng & Xue, Xinfeng & Li, Xiaoru & Xu, Chengcheng, 2021. "Towards network-wide safe and efficient traffic signal timing optimization based on costly stochastic simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
  • Handle: RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121001230
    DOI: 10.1016/j.physa.2021.125851
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437121001230
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2021.125851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fu, Chuanyun & Lu, Zhaoyou & Ding, Naikan & Bai, Wei, 2024. "Distance headway-based safety evaluation of emerging mixed traffic flow under snowy weather," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 642(C).
    2. Wang, Yinpu & An, Chengchuan & Ou, Jishun & Lu, Zhenbo & Xia, Jingxin, 2022. "A general dynamic sequential learning framework for vehicle trajectory reconstruction using automatic vehicle location or identification data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    3. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.
    4. Xiaodong Song & Mingyang Li & Zhitao Li & Fang Liu, 2021. "Global Optimization Algorithm Based on Kriging Using Multi-Point Infill Sampling Criterion and Its Application in Transportation System," Sustainability, MDPI, vol. 13(19), pages 1-17, September.
    5. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    6. Zheng, Liang & Bao, Ji & Xu, Chengcheng & Tan, Zhen, 2022. "Biobjective robust simulation-based optimization for unconstrained problems," European Journal of Operational Research, Elsevier, vol. 299(1), pages 249-262.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:571:y:2021:i:c:s0378437121001230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.