IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v641y2024ics0378437124002401.html
   My bibliography  Save this article

Predicting popularity of online products via collective recommendations

Author

Listed:
  • Zhang, Cheng-Jun
  • Zhu, Xue-lian
  • Yu, Wen-bin
  • Liu, Jin
  • Chen, Ya-dang
  • Yao, Yu
  • Wang, Su-xun

Abstract

Predicting the future popularity of commodities has always been a significant issue in information filtering research. Existing methods predominantly rely on the historical popularity of products, assuming that historically popular items will continue to be popular in the future due to preferential attachment. However, this method has limitations as it neglects the intricate structural information within the bipartite networks connecting users and items. The prediction method based on preferential attachment fails for commodities with the same degree of popularity. In this paper, we propose a popularity prediction method that aggregates user recommendation results to forecast item popularity. The method is general and applicable to any recommendation algorithm. For simplicity, we validate the method using the classic collaborative filtering algorithm. Experiments demonstrate that this method significantly outperforms the preferential attachment predictor in accurately predicting the future popularity of niche commodities.

Suggested Citation

  • Zhang, Cheng-Jun & Zhu, Xue-lian & Yu, Wen-bin & Liu, Jin & Chen, Ya-dang & Yao, Yu & Wang, Su-xun, 2024. "Predicting popularity of online products via collective recommendations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
  • Handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002401
    DOI: 10.1016/j.physa.2024.129731
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124002401
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takahashi, Shuntaro & Chen, Yu & Tanaka-Ishii, Kumiko, 2019. "Modeling financial time-series with generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 527(C).
    2. Shang, Ke-ke & Yan, Wei-sheng & Small, Michael, 2016. "Evolving networks—Using past structure to predict the future," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 120-135.
    3. Jang, Soomi & Choi, Heeick & Kovacs, Tunde & Autore, Don M., 2023. "Managerial ability and analysts’ stock recommendations," Finance Research Letters, Elsevier, vol. 58(PB).
    4. Mubbashir Ayub & Mustansar Ali Ghazanfar & Zahid Mehmood & Tanzila Saba & Riad Alharbey & Asmaa Mahdi Munshi & Mayda Abdullateef Alrige, 2019. "Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-29, August.
    5. Samuel Sale, R. & Mesak, Hani I. & Inman, R. Anthony, 2017. "A dynamic marketing-operations interface model of new product updates," European Journal of Operational Research, Elsevier, vol. 257(1), pages 233-242.
    6. Chengjun Zhang & Jin Liu & Yanzhen Qu & Tianqi Han & Xujun Ge & An Zeng, 2018. "Enhancing the robustness of recommender systems against spammers," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çelik, Gaffari & Talu, Muhammed Fatih, 2020. "Resizing and cleaning of histopathological images using generative adversarial networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    2. Matteo Rizzato & Julien Wallart & Christophe Geissler & Nicolas Morizet & Noureddine Boumlaik, 2022. "Generative Adversarial Networks Applied to Synthetic Financial Scenarios Generation," Papers 2209.03935, arXiv.org, revised May 2024.
    3. Jos'e-Manuel Pe~na & Fernando Su'arez & Omar Larr'e & Domingo Ram'irez & Arturo Cifuentes, 2023. "A Modified CTGAN-Plus-Features Based Method for Optimal Asset Allocation," Papers 2302.02269, arXiv.org, revised May 2024.
    4. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    5. Andrea Di Iura & Giulia Terenzi, 2022. "A Bayesian analysis of gain-loss asymmetry," SN Business & Economics, Springer, vol. 2(5), pages 1-23, May.
    6. Zhao, Liming & Zhang, Haihong & Wu, Wenqing, 2017. "Knowledge service decision making in business incubators based on the supernetwork model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 249-264.
    7. Lu, Xin & Qiu, Jing & Lei, Gang & Zhu, Jianguo, 2022. "Scenarios modelling for forecasting day-ahead electricity prices: Case studies in Australia," Applied Energy, Elsevier, vol. 308(C).
    8. Shang, Ke-ke & Small, Michael & Yan, Wei-sheng, 2017. "Link direction for link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 767-776.
    9. Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
    10. Schwarz, Justus Arne & Tan, Barış, 2021. "Optimal sales and production rollover strategies under capacity constraints," European Journal of Operational Research, Elsevier, vol. 294(2), pages 507-524.
    11. Weilong Fu & Ali Hirsa & Jorg Osterrieder, 2022. "Simulating financial time series using attention," Papers 2207.00493, arXiv.org.
    12. Andrea Giuseppe Di Iura & Giulia Terenzi, 2021. "A Bayesian analysis of gain-loss asymmetry," Papers 2104.06044, arXiv.org.
    13. Huang, Xiaoqiao & Li, Qiong & Tai, Yonghang & Chen, Zaiqing & Liu, Jun & Shi, Junsheng & Liu, Wuming, 2022. "Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM," Energy, Elsevier, vol. 246(C).
    14. Amir, Rabah & Machowska, Dominika & Troege, Michael, 2021. "Advertising patterns in a dynamic oligopolistic growing market with decay," Journal of Economic Dynamics and Control, Elsevier, vol. 131(C).
    15. Wu, Cheng-Han & Lai, Jing-Yi, 2019. "Dynamic pricing and competitive time-to-market strategy of new product launch under a multistage duopoly," European Journal of Operational Research, Elsevier, vol. 277(1), pages 138-152.
    16. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
    17. Charakopoulos, A.K. & Katsouli, G.A. & Karakasidis, T.E., 2018. "Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 495(C), pages 436-453.
    18. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    19. Shang, Ke-ke & Small, Michael & Yan, Wei-sheng, 2017. "Fitness networks for real world systems via modified preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 49-60.
    20. Jungsik Hwang, 2020. "Modeling Financial Time Series using LSTM with Trainable Initial Hidden States," Papers 2007.06848, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:641:y:2024:i:c:s0378437124002401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.