IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0220129.html
   My bibliography  Save this article

Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems

Author

Listed:
  • Mubbashir Ayub
  • Mustansar Ali Ghazanfar
  • Zahid Mehmood
  • Tanzila Saba
  • Riad Alharbey
  • Asmaa Mahdi Munshi
  • Mayda Abdullateef Alrige

Abstract

One of the main concerns for online shopping websites is to provide efficient and customized recommendations to a very large number of users based on their preferences. Collaborative filtering (CF) is the most famous type of recommender system method to provide personalized recommendations to users. CF generates recommendations by identifying clusters of similar users or items from the user-item rating matrix. This cluster of similar users or items is generally identified by using some similarity measurement method. Among numerous proposed similarity measure methods by researchers, the Pearson correlation coefficient (PCC) is a commonly used similarity measure method for CF-based recommender systems. The standard PCC suffers some inherent limitations and ignores user rating preference behavior (RPB). Typically, users have different RPB, where some users may give the same rating to various items without liking the items and some users may tend to give average rating albeit liking the items. Traditional similarity measure methods (including PCC) do not consider this rating pattern of users. In this article, we present a novel similarity measure method to consider user RPB while calculating similarity among users. The proposed similarity measure method state user RPB as a function of user average rating value, and variance or standard deviation. The user RPB is then combined with an improved model of standard PCC to form an improved similarity measure method for CF-based recommender systems. The proposed similarity measure is named as improved PCC weighted with RPB (IPWR). The qualitative and quantitative analysis of the IPWR similarity measure method is performed using five state-of-the-art datasets (i.e. Epinions, MovieLens-100K, MovieLens-1M, CiaoDVD, and MovieTweetings). The IPWR similarity measure method performs better than state-of-the-art similarity measure methods in terms of mean absolute error (MAE), root mean square error (RMSE), precision, recall, and F-measure.

Suggested Citation

  • Mubbashir Ayub & Mustansar Ali Ghazanfar & Zahid Mehmood & Tanzila Saba & Riad Alharbey & Asmaa Mahdi Munshi & Mayda Abdullateef Alrige, 2019. "Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-29, August.
  • Handle: RePEc:plo:pone00:0220129
    DOI: 10.1371/journal.pone.0220129
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220129
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0220129&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0220129?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shuang-Bo Sun & Zhi-Heng Zhang & Xin-Ling Dong & Heng-Ru Zhang & Tong-Jun Li & Lin Zhang & Fan Min, 2017. "Integrating Triangle and Jaccard similarities for recommendation," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-16, August.
    2. Chong Ju Choi & Carla C. J. M. Millar & Caroline Y. L. Wong, 2005. "Knowledge and the State," Palgrave Macmillan Books, in: Knowledge Entanglements, chapter 0, pages 19-38, Palgrave Macmillan.
    3. Safia Jabeen & Zahid Mehmood & Toqeer Mahmood & Tanzila Saba & Amjad Rehman & Muhammad Tariq Mahmood, 2018. "An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model," PLOS ONE, Public Library of Science, vol. 13(4), pages 1-24, April.
    4. Khurram Ashfaq Qazi & Tabassam Nawaz & Zahid Mehmood & Muhammad Rashid & Hafiz Adnan Habib, 2018. "A hybrid technique for speech segregation and classification using a sophisticated deep neural network," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Latha, R., 2022. "Enhancing recommendation competence in nearest neighbour models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    2. Gourav Jain & Tripti Mahara & S. C.Sharma, 2023. "Effective time context based collaborative filtering recommender system inspired by Gower’s coefficient," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 429-447, February.
    3. Zhang, Cheng-Jun & Zhu, Xue-lian & Yu, Wen-bin & Liu, Jin & Chen, Ya-dang & Yao, Yu & Wang, Su-xun, 2024. "Predicting popularity of online products via collective recommendations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    4. Wenlong Sun & Olfa Nasraoui & Patrick Shafto, 2020. "Evolution and impact of bias in human and machine learning algorithm interaction," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-39, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Junmei Feng & Xiaoyi Fengs & Ning Zhang & Jinye Peng, 2018. "An improved collaborative filtering method based on similarity," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
    2. Oliver Hinz & Jochen Eckert, 2010. "The Impact of Search and Recommendation Systems on Sales in Electronic Commerce," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 2(2), pages 67-77, April.
    3. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    4. Lawrence Bunnell & Kweku-Muata Osei-Bryson & Victoria Y. Yoon, 0. "RecSys Issues Ontology: A Knowledge Classification of Issues for Recommender Systems Researchers," Information Systems Frontiers, Springer, vol. 0, pages 1-42.
    5. Martinovici, A., 2019. "Revealing attention - how eye movements predict brand choice and moment of choice," Other publications TiSEM 7dca38a5-9f78-4aee-bd81-c, Tilburg University, School of Economics and Management.
    6. Joanna Sokolowska & Patrycja Sleboda, 2015. "The Inverse Relation Between Risks and Benefits: The Role of Affect and Expertise," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1252-1267, July.
    7. Donald R. Haurin & Stuart S. Rosenthal, 2009. "Language, Agglomeration and Hispanic Homeownership," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 155-183, June.
    8. Jong Won Min, 2019. "The Influence of Stigma and Views on Mental Health Treatment Effectiveness on Service Use by Age and Ethnicity: Evidence From the CDC BRFSS 2007, 2009, and 2012," SAGE Open, , vol. 9(3), pages 21582440198, September.
    9. Zhan (Michael) Shi & T. S. Raghu, 2020. "An Economic Analysis of Product Recommendation in the Presence of Quality and Taste-Match Heterogeneity," Information Systems Research, INFORMS, vol. 31(2), pages 399-411, June.
    10. Voxi Amvilah & Simplice Anutechia Asongu & Antonio Andrés, 2014. "Globalization, Peace & Stability, Governance, and Knowledge Economy," AAYE Policy Research Working Paper Series 14_024, Association of African Young Economists, revised Dec 2014.
    11. Alwang, Jeffrey & Larochelle, Catherine & Barrera, Victor, 2017. "Farm Decision Making and Gender: Results from a Randomized Experiment in Ecuador," World Development, Elsevier, vol. 92(C), pages 117-129.
    12. Yanina Welp & Ferran Urgell & Eduard Aibar, 2007. "From Bureaucratic Administration to Network Administration? An Empirical Study on E-Government Focus on Catalonia," Public Organization Review, Springer, vol. 7(4), pages 299-316, December.
    13. Brent Hammer & Helen Vallianatos & Candace Nykiforuk & Laura Nieuwendyk, 2015. "Perceptions of healthy eating in four Alberta communities: a photovoice project," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(4), pages 649-662, December.
    14. Amine Dadoun & Michael Defoin-Platel & Thomas Fiig & Corinne Landra & Raphaël Troncy, 2021. "How recommender systems can transform airline offer construction and retailing," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(3), pages 301-315, June.
    15. Parag, Yael & Darby, Sarah, 2009. "Consumer-supplier-government triangular relations: Rethinking the UK policy path for carbon emissions reduction from the UK residential sector," Energy Policy, Elsevier, vol. 37(10), pages 3984-3992, October.
    16. Umberto Panniello & Michele Gorgoglione & Alexander Tuzhilin, 2016. "Research Note—In CARSs We Trust: How Context-Aware Recommendations Affect Customers’ Trust and Other Business Performance Measures of Recommender Systems," Information Systems Research, INFORMS, vol. 27(1), pages 182-196, March.
    17. Shiau, Wen-Lung & Dwivedi, Yogesh K. & Yang, Han Suan, 2017. "Co-citation and cluster analyses of extant literature on social networks," International Journal of Information Management, Elsevier, vol. 37(5), pages 390-399.
    18. Kim, Jae Kyeong & Kim, Hyea Kyeong & Oh, Hee Young & Ryu, Young U., 2010. "A group recommendation system for online communities," International Journal of Information Management, Elsevier, vol. 30(3), pages 212-219.
    19. Quentin Plantec & Benjamin Cabanes & Pascal Le Masson & Benoit Weil, 2021. "Market-Pull Or Research Push? Effects Of Research Orientations On University-Industry Collaborative Ph.D. Projects' Performances," Post-Print halshs-03190142, HAL.
    20. Gupta, Mukul & Kumar, Pradeep, 2020. "Recommendation generation using personalized weight of meta-paths in heterogeneous information networks," European Journal of Operational Research, Elsevier, vol. 284(2), pages 660-674.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0220129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.