IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0206458.html
   My bibliography  Save this article

Enhancing the robustness of recommender systems against spammers

Author

Listed:
  • Chengjun Zhang
  • Jin Liu
  • Yanzhen Qu
  • Tianqi Han
  • Xujun Ge
  • An Zeng

Abstract

The accuracy and diversity of recommendation algorithms have always been the research hotspot of recommender systems. A good recommender system should not only have high accuracy and diversity, but also have adequate robustness against spammer attacks. However, the issue of recommendation robustness has received relatively little attention in the literature. In this paper, we systematically study the influences of different spammer behaviors on the recommendation results in various recommendation algorithms. We further propose an improved algorithm by incorporating the inner-similarity of user’s purchased items in the classic KNN approach. The new algorithm effectively enhances the robustness against spammer attacks and thus outperforms traditional algorithms in recommendation accuracy and diversity when spammers exist in the online commercial systems.

Suggested Citation

  • Chengjun Zhang & Jin Liu & Yanzhen Qu & Tianqi Han & Xujun Ge & An Zeng, 2018. "Enhancing the robustness of recommender systems against spammers," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-14, November.
  • Handle: RePEc:plo:pone00:0206458
    DOI: 10.1371/journal.pone.0206458
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206458
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0206458&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0206458?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cheng-Jun Zhang & An Zeng, 2016. "Prediction of missing links and reconstruction of complex networks," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(10), pages 1-12, October.
    2. Wei Zhou & Junhao Wen & Qiang Qu & Jun Zeng & Tian Cheng, 2018. "Shilling attack detection for recommender systems based on credibility of group users and rating time series," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-17, May.
    3. Lü, Linyuan & Zhou, Tao, 2011. "Link prediction in complex networks: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1150-1170.
    4. Tao Zhou & Linyuan Lü & Yi-Cheng Zhang, 2009. "Predicting missing links via local information," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(4), pages 623-630, October.
    5. David Liben‐Nowell & Jon Kleinberg, 2007. "The link‐prediction problem for social networks," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 58(7), pages 1019-1031, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Cheng-Jun & Zhu, Xue-lian & Yu, Wen-bin & Liu, Jin & Chen, Ya-dang & Yao, Yu & Wang, Su-xun, 2024. "Predicting popularity of online products via collective recommendations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    2. Diego Fernández & Vreixo Formoso & Fidel Cacheda & Victor Carneiro, 2019. "High Order Profile Expansion to tackle the new user problem on recommender systems," PLOS ONE, Public Library of Science, vol. 14(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Fatemeh & Lotfi, Shahriar & Izadkhah, Habib, 2021. "Community-guided link prediction in multiplex networks," Journal of Informetrics, Elsevier, vol. 15(4).
    2. Andreas Spitz & Anna Gimmler & Thorsten Stoeck & Katharina Anna Zweig & Emőke-Ágnes Horvát, 2016. "Assessing Low-Intensity Relationships in Complex Networks," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-17, April.
    3. Qiaoran Yang & Zhiliang Dong & Yichi Zhang & Man Li & Ziyi Liang & Chao Ding, 2021. "Who Will Establish New Trade Relations? Looking for Potential Relationship in International Nickel Trade," Sustainability, MDPI, vol. 13(21), pages 1-15, October.
    4. Rafiee, Samira & Salavati, Chiman & Abdollahpouri, Alireza, 2020. "CNDP: Link prediction based on common neighbors degree penalization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    5. Lee, Yan-Li & Zhou, Tao, 2021. "Collaborative filtering approach to link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    6. Kai Yang & Yuan Liu & Zijuan Zhao & Xingxing Zhou & Peijin Ding, 2023. "Graph attention network via node similarity for link prediction," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(3), pages 1-10, March.
    7. Mungo, Luca & Lafond, François & Astudillo-Estévez, Pablo & Farmer, J. Doyne, 2023. "Reconstructing production networks using machine learning," Journal of Economic Dynamics and Control, Elsevier, vol. 148(C).
    8. Zhou, Tao & Lee, Yan-Li & Wang, Guannan, 2021. "Experimental analyses on 2-hop-based and 3-hop-based link prediction algorithms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    9. Yin, Likang & Deng, Yong, 2018. "Toward uncertainty of weighted networks: An entropy-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 176-186.
    10. Yu, Jiating & Wu, Ling-Yun, 2022. "Multiple Order Local Information model for link prediction in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    11. Yueran Duan & Qing Guan, 2021. "Predicting potential knowledge convergence of solar energy: bibliometric analysis based on link prediction model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 3749-3773, May.
    12. Park, Ji Hwan & Chang, Woojin & Song, Jae Wook, 2020. "Link prediction in the Granger causality network of the global currency market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    13. Lee, Yan-Li & Dong, Qiang & Zhou, Tao, 2021. "Link prediction via controlling the leading eigenvector," Applied Mathematics and Computation, Elsevier, vol. 411(C).
    14. Jiao, Yang & Wu, Jianshe & Xiang, Peng & Wang, Fang, 2023. "Link prediction from fusion information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    15. Wang, Jun & Zhang, Qian-Ming & Zhou, Tao, 2019. "Tag-aware link prediction algorithm in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 105-111.
    16. Najari, Shaghayegh & Salehi, Mostafa & Ranjbar, Vahid & Jalili, Mahdi, 2019. "Link prediction in multiplex networks based on interlayer similarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    17. Sanda Martinčić-Ipšić & Edvin Močibob & Matjaž Perc, 2017. "Link prediction on Twitter," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-21, July.
    18. Assouli, Nora & Benahmed, Khelifa & Gasbaoui, Brahim, 2021. "How to predict crime — informatics-inspired approach from link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 570(C).
    19. Huang, Lu & Chen, Xiang & Ni, Xingxing & Liu, Jiarun & Cao, Xiaoli & Wang, Changtian, 2021. "Tracking the dynamics of co-word networks for emerging topic identification," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    20. Zhang, Ting & Zhang, Kun & Li, Xun & Lv, Laishui & Sun, Qi, 2021. "Semi-supervised link prediction based on non-negative matrix factorization for temporal networks," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0206458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.