IDEAS home Printed from https://ideas.repec.org/p/boc/bocoec/321.html
   My bibliography  Save this paper

Fractional Monetary Dynamics

Author

Listed:
  • John Barkoulas

    (Louisiana Tech University)

  • Christopher F. Baum

    (Boston College)

  • Mustafa Caglayan

    (Koc University)

Abstract

We test for fractional dynamics in U.S. monetary series, their various formulations and components, and velocity series. Using the spectral regression method, we find evidence of a fractional exponent in the differencing process of the monetary series (both simple-sum and Divisia indices), in their components (with the exception of demand deposits, savings deposits, overnight repurchase agreements, and term repurchase agreements), and the monetary base and money multipliers. No evidence of fractional behavior is found in the velocity series. Granger's (1980) aggregation hypothesis is evaluated and implications of the presence of fractional monetary dynamics are drawn.

Suggested Citation

  • John Barkoulas & Christopher F. Baum & Mustafa Caglayan, 1998. "Fractional Monetary Dynamics," Boston College Working Papers in Economics 321., Boston College Department of Economics.
  • Handle: RePEc:boc:bocoec:321
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/EC-P/wp321.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C.B. Phillips & Pierre Perron, 1986. "Testing for a Unit Root in Time Series Regression," Cowles Foundation Discussion Papers 795R, Cowles Foundation for Research in Economics, Yale University, revised Sep 1987.
    2. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    3. William S. Haraf, 1986. "Monetary Velocity and Monetary Rules," Cato Journal, Cato Journal, Cato Institute, vol. 6(2), pages 641-666, Fall.
    4. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    5. Diebold, Francis X & Rudebusch, Glenn D, 1991. "Is Consumption Too Smooth? Long Memory and the Deaton Paradox," The Review of Economics and Statistics, MIT Press, vol. 73(1), pages 1-9, February.
    6. William A. Barnett & Edward K. Offenbacher & Paul A. Spindt, 2000. "The New Divisia Monetary Aggregates," Contributions to Economic Analysis, in: The Theory of Monetary Aggregation, pages 360-388, Emerald Group Publishing Limited.
    7. Hassler, Uwe & Wolters, Jurgen, 1995. "Long Memory in Inflation Rates: International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 37-45, January.
    8. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    9. Granger, C. W. J., 1980. "Long memory relationships and the aggregation of dynamic models," Journal of Econometrics, Elsevier, vol. 14(2), pages 227-238, October.
    10. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    11. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
    12. King, Robert G. & Plosser, Charles I. & Stock, James H. & Watson, Mark W., 1991. "Stochastic Trends and Economic Fluctuations," American Economic Review, American Economic Association, vol. 81(4), pages 819-840, September.
    13. Baillie, Richard T & Chung, Ching-Fan & Tieslau, Margie A, 1996. "Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(1), pages 23-40, Jan.-Feb..
    14. Apostolos Serletis, 2006. "Random Walks, Breaking Trend Functions, and the Chaotic Structure of the Velocity of Money," World Scientific Book Chapters, in: Money And The Economy, chapter 6, pages 119-130, World Scientific Publishing Co. Pte. Ltd..
    15. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
    16. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    17. Gould, John P & Nelson, Charles R, 1974. "The Stochastic Structure of the Velocity of Money," American Economic Review, American Economic Association, vol. 64(3), pages 405-418, June.
    18. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
    19. Granger, Clive W. J. & Ding, Zhuanxin, 1996. "Varieties of long memory models," Journal of Econometrics, Elsevier, vol. 73(1), pages 61-77, July.
    20. Uwe Hassler, 1993. "Regression Of Spectral Estimators With Fractionally Integrated Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(4), pages 369-380, July.
    21. Tsay, Wen-Jen & Chung, Ching-Fan, 2000. "The spurious regression of fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 96(1), pages 155-182, May.
    22. Daniel L. Thornton & Piyu Yue, 1992. "An extended series of divisia monetary aggregates," Review, Federal Reserve Bank of St. Louis, issue Nov, pages 35-52.
    23. Friedman, Benjamin M & Kuttner, Kenneth N, 1992. "Money, Income, Prices, and Interest Rates," American Economic Review, American Economic Association, vol. 82(3), pages 472-492, June.
    24. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    25. Shea, Gary S, 1991. "Uncertainty and Implied Variance Bounds in Long-Memory Models of the Interest Rate Term Structure," Empirical Economics, Springer, vol. 16(3), pages 287-312.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-21, University of Connecticut, Department of Economics.
    2. Tapiero, Charles S. & Vallois, Pierre, 2016. "Fractional randomness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1161-1177.
    3. Coleman, Simeon & Sirichand, Kavita, 2012. "Fractional integration and the volatility of UK interest rates," Economics Letters, Elsevier, vol. 116(3), pages 381-384.
    4. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    5. Coleman, Simeon, 2010. "Inflation persistence in the Franc zone: Evidence from disaggregated prices," Journal of Macroeconomics, Elsevier, vol. 32(1), pages 426-442, March.
    6. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    2. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    3. John Barkoulas & Christopher Baum & Gurkan Oguz, 1998. "Stochastic long memory in traded goods prices," Applied Economics Letters, Taylor & Francis Journals, vol. 5(3), pages 135-138.
    4. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    5. Christopher F. Baum & John T. Barkoulas & Mustafa Caglayan, 1999. "Persistence in International Inflation Rates," Southern Economic Journal, John Wiley & Sons, vol. 65(4), pages 900-913, April.
    6. Christopher F. Baum & John Barkoulas, 2006. "Long-memory forecasting of US monetary indices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(4), pages 291-302.
    7. Carlos Barros & Luis Gil-Alana, 2013. "Inflation Forecasting in Angola: A Fractional Approach," African Development Review, African Development Bank, vol. 25(1), pages 91-104.
    8. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    9. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    10. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    11. Giorgio Canarella & Stephen M. Miller, 2016. "Inflation Persistence and Structural Breaks: The Experience of Inflation Targeting Countries and the US," Working papers 2016-11, University of Connecticut, Department of Economics.
    12. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    13. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    14. Carlos Pestana Barros & Luis Gil-Alana, 2006. "Eta: A Persistent Phenomenon," Defence and Peace Economics, Taylor & Francis Journals, vol. 17(2), pages 95-116.
    15. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2011. "Long Memory and Fractional Integration in High-Frequency British Pound / Dollar Spot Exchange Rates," Faculty Working Papers 02/11, School of Economics and Business Administration, University of Navarra.
    16. Giorgio Canarella & Stephen M Miller, 2017. "Inflation Persistence Before and After Inflation Targeting: A Fractional Integration Approach," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(1), pages 78-103, January.
    17. Koop, Gary & Ley, Eduardo & Osiewalski, Jacek & Steel, Mark F. J., 1997. "Bayesian analysis of long memory and persistence using ARFIMA models," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 149-169.
    18. Christian Fischer & Luis Alberiko Gil-Alana, 2005. "The Nature of the Relationship between International Tourism and International Trade: The Case of Ge," Faculty Working Papers 15/05, School of Economics and Business Administration, University of Navarra.
    19. Emma Iglesias & Garry Phillips, 2005. "Analysing one-month Euro-market interest rates by fractionally integrated models," Applied Financial Economics, Taylor & Francis Journals, vol. 15(2), pages 95-106.
    20. S. Lardic & V. Mignon, 2002. "Fractional cointegration and term structure of interest rates," THEMA Working Papers 2002-28, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.

    More about this item

    Keywords

    money supply; Divisia money; long memory; spectral regression;
    All these keywords.

    JEL classification:

    • E51 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Money Supply; Credit; Money Multipliers
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:bocoec:321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/debocus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.